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Executive summary

The report at-hand presents (1) an introduction to spatio-temporal data types and analysis
methods. (2) Batch data samples of the data streams described in Deliverable 2.1 are provided
and described. (3) Learning tasks are derived from the two use cases (nation-wide flooding
scenario and city-level scenario). (4) Data quality issues are pointed out. (5) First analyses
and their results are shown. (6) Finally, the prototypes for both use cases are introduced.
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1 Introduction

The INSIGHT application scenarios demonstrate the benefits of Big Data Analytics for public
safety in the area of civil protection. As a real-world test-bed, we have chosen two comple-
menting and challenging scenarios of high public interest: tra�c and flooding monitoring in
cities, here the City of Dublin, and monitoring of nation-wide disasters – here: flooding in
Germany. For these scenarios, we have elicited tasks and requirements. Requirements of the
end-users (public authorities in charge of civil protection, compare D6.1) have a strong impact
on the architecture (D2.1) and the analysis methods (D5.1 at-hand). The real-time analysis
of heterogeneous data streams poses new challenges on existing methods. Whereas exist-
ing preprocessing and analysis methods could use multiple scans, real-time analysis may not
look twice and has to perform its tasks in a single-scan. Thus, besides o↵-line learning from
batch data, analysis and prediction methods which are capable of working on data streams are
demanded.

Methods will be developed for both use-case scenarios and are eventually applicable to
di↵erent data sources (focus of current studies) in order to profit from synergies between the
scenarios. We plan to integrate existing streaming platforms (compare D2.1 for an introduction
to infosphere streams, streams-framework and storm) and already have made some progress in
the integrating of event detection and streaming data analysis. A recent study of Technion and
TUDo demonstrates that the streams-framework [BB12b], which already comprises multiple
data analysis and mining algorithms [BB12a, Bif13], is capable of high throughput analysis
[GKS+13].

In this report, we describe test data sets for the evaluation of analyses. We highlight recent
analyses and work in progress to meet the requirements. This comprises the geo-coding of
text messages, the visual inspection of Twitter messages, location analysis of Twitter users in
Dublin, the spatial clustering of locations based on Twitter messages, analysis of tra�c flow
data, the imputation of tra�c flow for unobserved locations and the detection of events from
mobile phone usage data.

2 Spatio-Temporal Data Analysis

The common characteristic of the data streams available in INSIGHT is its spatio-temporal
nature. Though not all of the data contain coordinates (e.g. some Twitter messages) they
mostly contain information on locations or moving objects. In both dimensions, space and
time, the data items have limited validity. For example, a message containing the weather
information at a particular spatio-temporal coordinate is invalid in future or in large distance.
The GPS information of a moving object (e.g. a vehicular position) loses validity immediately
in future and in its close spatial neighbourhood. Thus, the models developed by INSIGHT
have to incorporate latest data samples and need to perform in real-time. This does not
exclude learning from historic data samples in order to compare current situations with the
past and project it into future. The required architecture for these analyses is developed in
D2.1. This deliverable focuses on the elicitation of end-user requirements and identification
of analysis tasks for WP5 (see next sections) and we give a brief overview on possible spatio-
temporal analysis tasks. For a comprehensive introduction to spatio-temporal data mining we
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refer to the book [GP08], which results from the GeoPKDD project funded by the European
Commission under the Sixth Framework Programme, IST-6FP-014915.

Spatio-temporal data comes in a variety of forms and representations, depending on the
domain, the observed phenomenon, and the observation method. In principle, there are three
types of spatio-temporal data: spatial time series, events, and trajectories.

• A spatial time series consists of tuples (attribute, object, time, location).

• An event of a particular type event
i

is triggered from a spatial time se-
ries under certain conditions and contains the tuples verifying these conditions
(event

i

, object
n

, time
n

, location
n

).

• A trajectory is a spatial time series for a particular object
i

. It contains the location per
time and is a series of tuples (object

i

, time
n

, location
n

). Every timestamp time
n

is
contained at most once.

The types may be transformed to accommodate di↵erent analysis tasks and goals; this is focus
of WP3.

2.1 Frequent Patterns

The challenge of frequent pattern mining is the identification of frequently co-occurring sets
of items or more complex patterns (that describe relations among space and time). Input
items can be elements of spatial time series, events, or the tuples of trajectories. Output are
frequent sets of these items. A common algorithm for mining these data sets for frequent
item sets is the apriori algorithm that generates candidates for frequent item sets as unions
of smaller frequent item sets. A common parameter for frequent item mining is the minimum
support which is a threshold to distinguish among frequent and un-frequent sets of items.

As the coordinates in trajectories may be too fine-granular to identify frequently co-visited
places, the T-pattern algorithm [GNPP07] extracts spatial regions from the trajectories which
are frequently visited and returns frequent visit patterns among them.

2.2 Classification, Regression, Prediction

For spatio-temporal data, the group of regression and prediction tasks originates in geo-
statistics. The idea is to formulate a model of the data in order to impute unknown values
using this model. While classification works on discrete values, regression is for continuous
ones. Prediction imputes a label (class membership, target value) using a decision or regression
function that was learned from complete instances. Classification, Regression and Prediction
are applicable to all three data types: spatio-temporal time series, events and trajectories.

A characteristic of spatio-temporal data (if constrained by space and time e.g. tra�c flow in
a street network) is the autocorrelation among the values, whereas close values are more related
than distant ones [Tob70]. A commonly used regression method from geo-statistics, Kriging
[Kri51], models the autocorrelation with variograms that describe the correlation among spatio-
temporal values at di↵erent positions as function of their distance.

Geographically weighted regression [FBC02] is another commonly used method which mod-
els an unknown value as linear combination of observed values, the weights of the observed
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values vary for di↵erent locations. Spatial k-nearest neighbour algorithm [MHK+08] imputes
a data point as weighted sum of the k nearest points.

Classification of the tuples in spatio-temporal time series is important for outlier detec-
tion, possible methods are 1-class support vector machines. They describe the subspace of
normal observations by a minimum enclosing ball, outliers are outside the ball. As the split
decision cannot necessarily be described spherical in the attributes of the observations, they
are transferred to a feature space. Instead of computing the transformation for every in-
coming data, an inner product in feature space is defined which can be computed directly
using the observations. It maps two observations to a real number. Core vector machines
compute an approximation of the minimum enclosing ball with constant space and time re-
quirements [BC08] which contains all observations when scaled by a factor of (1 + ✏), ✏ > 0.
For distributed spatio-temporal time series, recent work applied the core vector machine to
outlier detection in vertically distributed data streams using core vector machines is promising
[SBDM13]. Another interesting approach is that of exceptional model mining, where rare
but coherent sets of exceptions indicate a event [DFK12]. This approach could possibly be
extended to spatio-temporal data.

Prediction of future values in a spatio-temporal time series has to respect Tobler’s law,
whereas close values correlate more than distant ones [Tob70]. This autocorrelation can
directly be reflected by so-called graphical models. Every observation at a location per time
is assigned to a random variable. In a graphical model the conditional dependencies of the
probability distributions for the random variables are denoted by edges. Recently developed
method by [PLM13] uses Markov Random Fields where every random variable for a particular
time slice is connected with its direct neighbours and their ancestors from previous time slice.
The method becomes e�cient through the regularization of the optimization step, which saves
computation when the measurements remain about the same. Incorporating measurements
from previous time slices, the method estimates the most likely prediction for future time slices.

2.3 Clustering and Similarity Search

Clustering focuses on the identification of groups of objects (clusters) where the elements of
a group are similar and the elements of di↵erent clusters are dissimilar. For non-overlapping
clusters, the result is a partitioning of the data. Clustering can be applied to all three spatio-
temporal data types: events, spatio-temporal time series and trajectories.

Commonly applied spatio-temporal clustering method is the density based algorithm DB-
SCAN [EKSX96] that computes spatio-temporal density of the data points and extracts clusters
as highly dense sets of points. DBSCAN defines similarity among points based on their spatio-
temporal distance and follows Tobler’s law (close objects are more related than distant ones
[Tob70]). Other similarity measures e.g. among time series, among the properties of spatio-
temporal events, or among trajectories can be defined. The well-known k-Means algorithm
has been turned into an algorithm for streaming data, recently [FGS+13]. Another method
that could be applied for cluster analysis is OPTICS [ABpKS99].

The Voronoi tessellation method [Vor08] partitions space based on a set of spatial points.
Every spatial point in this set is associated with a surrounding polygon comprising all spatial
locations that are not closer to any other point contained in the set.

In [ZYLG06] Zeinalipour-Yazti et al. introduced the distributed spatio-temporal similarity
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search problem: given a query trajectory Q, the purpose of the proposed algorithm was to
find the trajectories that follow a motion similar to Q, when each of the target trajectories
is segmented across a number of distributed nodes. Two algorithms were proposed, UB-K
and UBLB-K, which combine local computations of lower and upper bounds on the match-
ing between the distributed subsequences and Q. The approach generates the desired result
without pulling together all the distributed subsequences over the fundamentally expensive
communication medium. The described problem finds applications in a wide array of domains,
such as, e.g., cellular networks, wildlife monitoring, and video surveillance.

2.4 Geo-Coding and Map Matching

The transformation of geo-locations is subject to geo-coding and map matching. As geo-
coding aims at identification of a location for a spatio-temporal event without direct reference
to an identifier (e.g. a text message that mentions a street name), map matching transfers
the coordinates of events or trajectories from one reference system to another one.

Map matching tasks are common for GPS trajectories which are recorded in the WGS84
[Nat00] reference system and have to be mapped to a discrete street network graph. The
spatial extent of the street segments are used for distance calculations among the street
network and a particular point. The algorithm in [LZZ+09] uses these distances to generate
a set of closest segments for every point of a trajectory (the segment candidates). For the
identification of the most likely street segment among these candidates a routing algorithm
with presumptions on individual mobility is used. In result every point of the trajectory is
matched to a street segment.

2.5 Spatiotemporal Burstiness Analysis

In the context of a document search engine, Lappas et alii investigated sudden high frequent
queries for a particular t. “Given a term t, a burst is generally exhibited when an unusually high
frequency is observed for t.” While spatial and temporal burstiness have been studied individu-
ally in the past,only recently spatio-temporal term burstiness has been studied [LVGT12]. Two
alternative approaches for mining spatio-temporal burstiness patterns, STComb and STLocal,
are presented, providing valuable insight on spatio-temporal burstiness from di↵erent perspec-
tives. It is shown how the mined patterns can be utilized toward an e�cient document-search
engine and how this engine returns documents on influential events. The e�ciency of the
proposed methods is demonstrated through an extensive experimental evaluation on real and
synthetic datasets.

In [LVGT13], the methojd is enhanced to identifying spatio-temporal burstiness patterns
in streams. Streams are spatially distributed and the system, called STEM (Spatio-TEmporal
Miner), mines spatio-temporal burstiness patterns from any collection of geostamped streams,
like newspapers, location-based social networks, sensor networks, urban informatics, or blog-
ging and microblogging platforms with spatial information (e.g. Twitter). STEM implements
the two alternative approaches, STComb and STLocal, on streams. Moreover, STEM imple-
ments a user-friendly interface to help end-users in exploiting the findings.
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2.6 List of the Analysis Tasks

We have identified the following tasks for spatio-temporal data analysis that are relevant for
the Insight applications.

1. Frequent pattern mining for finding co-occurring sets of measurements or events,

2. Kriging for describing autocorrelation within spatio-temporal series,

3. Spatial k-Nearest Neighbour for imputing a data point based on its neighbours,

4. Core or Ball vector machines for outlier detection,

5. Spatio-temporal Markov Random Fields for the prediction of future measurement values,

6. Clustering for the overview of a current state of all measurements,

7. Voronoi tessellation for structuring the space,

8. Distributed spatio-temporal search for finding similar trajectories,

9. Transformation of geo-locations for map matching,

10. Spatio-temporal local and combinatorial patterns for detecting message or query bursts.

In the next section, we characterize the use cases and indicate, where the analysis tasks are
needed.

3 Use Cases, Tasks and Data

In this section, we describe the learning and prediction tasks for the use-cases together with
the data sets as they will be used for the evaluation and comparison of the project’s methods.

3.1 Nation-wide use case

The nation-wide application of INSIGHT is conducted in the German Joint Information and
Situation Centre (GMLZ) of the Bundesamt für Bevölkerungsschutz und Katastrophenhilfe
(BBK). The goals of the GMLZ are to provide information on incidents and their risks, to
support responding forces with resource management, and to alarm in case of multi-national
hazards. Several data channels (depicted on a large video wall) are scanned manually for
warnings and alerts which are collected in daily reports. The data channels monitored so far
include weather data, river stages, severe weather watch, and news channels (European Media
Monitoring1).

First conversations with the head of the GMLZ revealed that in addition to the manual
data analysis, an automatic system is desired which helps in the following.

1. The detection of incident events (e.g. flooding), and

1
http://emm.newsexplorer.eu/NewsExplorer/home/en/latest.html
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2. supporting situation understanding is required.

3. Prediction of future situations (spatio-temporal time series) and incident events is an
appreciated feature for decision support in crisis management.

The INSIGHT system aims at detecting flooding situations and at analyzing additional stream-
ing data sources (location based social networks and phone usage data) in the form of spatio-
temporal time series.

The expected output of the incident detection are warnings, which are spatio-temporal
events. Developing an ontology of these warning events is the focus of Deliverable 2.2. For
each of the events, the conditions that increase its likelihood should be learned from incoming
spatio-temporal time series. Traceability of the event detection decisions and transparency on
which data items led to a decision are required by the BBK. The automatic event detection
should detect more events than manual inspection with less detection time.

Situation understanding should enhance the knowledge on the current situation. This task
is actually the prediction of a spatio-temporal time series from the input time series. In the
prediction task the occurrence of an event and the temporal evolution of incorporated time
series (incoming ones and derived ones) should be predicted to reduce the warning time in
case of an incident and for support of crisis management.

The integration of the steps for the automatic event detection into a sophisticated visu-
alization is a major requirement of the BBK. This visualization should bundle the relevant
information in case of an incident and does not catch much attention otherwise.

Following quote of the BBK (already stated in D6.1) stresses the requirements on trace-
ability, data integration and visualization.

The display of the findings of the INSIGHT tool is one part of the information
shown on the big wall display in the GMLZ (about one-third of the big wall display).
Beside this information still a situation overview, incoming CESIS2 information as
well as a news ticker will be shown as well on the big wall display. During the
normal monitoring and analysis phase of incoming data, the big wall display should
only show one world map and one German map respectively on the Euro board3

for the INSIGHT findings. This simplifies the traditional usage of the big wall
display in the GMLZ with several maps showing di↵erent content being monitored
by the sta↵ members. In the case the INSIGHT tool detects an event, a window
should immediately pop up with a symbol (the same symbols used in deNIS KM4)
and flash at the big wall display in the situation room as well as on the individual
monitors of the sta↵ members of the GMLZ. An alarm signal should additionally
be visible in the footer of the displays during such a situation with the possibility
to turn it o↵ after recognition. Further, the INSIGHT user interface should provide

2
The Common Emergency Communication and Information System is a software sys-

tem for resource management and exchange among counties of the European Union,

http://ec.europa.eu/echo/policies/disaster response/cecis en.htm [Last accessed: 28 June, 2013]

3
Euro Display is a manufacturer of digital billboards, http://www.eurodisplay.com [Last accessed: 28

June, 2013]

4
deNIS is the abbreviation for the German Emergency Prevention Information System,

https://www.denis.bund.de [Last accessed: 28 June, 2013]
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the possibility to open and to scale windows with di↵erent content on each monitor
or additional analysis tables. After recognition of an event, the sources indicating
such an event should be shown. This simplifies the estimation about the reliability
of the shown data; desirable would be a scale about the reliability of the data.
The reliability estimation of the data is needed for upcoming decisions making.
Whether e.g. only a few tweets suggest a possibility of an event or a few hundreds,
which are also validated through other data sources, makes a big di↵erence.

The focussed use case of the INSIGHT system will be a once-in-a-millennium high tide.
In this scenario a large-scale evacuation of the entire flooded area and areas at risk gets
initiated. Such a large-scale evacuation holds a lot of risks and uncertainties. Their automatic
identification is the aim of the INSIGHT system, this should be faster than manual data
inspection. The use case is of high relevance as recent events in Germany show. The data
and experiences of current events will be integrated in the INSIGHT models.

3.1.1 Availability of Test Data Samples

The following data samples are available for the nation-wide flooding use case scenario:
(1) data on mobile phone usage (access granted via Fraunhofer IAIS) and (2) geo-coded
Twitter messages. Additionally, data for recent flooding in Germany are provided: (3) Twitter
messages including ‘hochwasser’ and (4) a list of relevant events from the BBK.

Next chart gives an overview on the data availability for 2013 June and July, see Figure 1.

2013

05 06 07

Flooding Twitter Data

List of BBK events

Geo-Coded Twitter Data

Mobile Phone Usage Data

Figure 1: Data Availability (per month) for Recent Flooding Events in Germany.

The data samples are in the format described in Section 4. Utilizing the data, following analysis
tasks are necessary to meet the requirements of the BBK.
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3.1.2 Task I - Model Current Situation

We want to model normality in order to detect changes. Also, we want to achieve a complete
picture of normality. In order to get insights on routine behaviour of the people, we extract
regions with similar temporal distributions of Twitter messages i.e. spatial clusters of land use
from Twitter data. Corresponding learning tasks are spatio-temporal clustering of incoming
data streams, detection of frequent patterns, and Voronoi diagrams, which help to identify
regular behaviour. This gives an overview of a situation and, thus, fulfils the demand for
situation understanding.

For completing the picture of normality, extraction of spatio-temporal time series on peo-
ple’s presence from phone usage data is performed by geographically weighted regression.
Detailed analyses take into account the time of the day, the season, the weather, and known
events that attract many visitors. Hence, the normal behavior is also qualified by temporal
aspects.

A model of the current situation supports the detection of deviations from normality and
provides information on people’s preferences in case of unexpected events. With the spatio-
temporal time series (mobile phone usage and Twitter messages) we adjust a classification
model to the normal behaviour in order to detect outliers. We exploit usage of recently
developed core vector machines for distributed data streams [SBDM13].

3.1.3 Task II - Event Detection

From the incoming spatio-temporal data streams we detect automatically the incident events
for the BBK. An annotated list of the interesting events during the recent flood is provided
by the BBK. The goal is to identify the events more reliable than by manual inspection.

The task splits into

1. identification of the conditions in the data streams for raising an incident event and

2. extraction of its properties (event type, time, spatial extent).

With the classification model from task I that identifies normal situations in the data stream
we aim at detecting anomalies. We create spatio-temporal clusters of Twitter messages (using
a density based clustering e.g. DBSCAN [EKSX96]) with flooding related topics to inspect
spreading of relevant messages over certain locations and to extract the spatial extent of
derived events.

The identification of sequences of these anomalies which characterize an event are subject
for complex event processing. Important constraints for the automatic detection are traceability
and transparency of the decisions. The explanation of an event from incoming data streams
is a link to WP3, focussing on complex event processing.

Validation of detected events is possible with comparison to the manually created report
on important events.

3.1.4 Task III - Prediction

For early event detection and decision support, we predict future values of the incoming sensor
data (tra�c, population density, tides of rivers, street use, etc.) using the method we presented
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in [PLM13]. Also the derived spatio-temporal time series e.g. the number of persons at a
location are predicted for future time periods. The method will be run on several particular
target variables. It will be compared with simpler methods, e.g. a spatio-temporal k-nearest
neighbour.

3.1.5 Task IV - Generator

Since the data samples used in the project are not publicly available, generators of the data
streams are required for independent tests of methods and for the publication of results. The
artificial streams need to provide developers with the same characteristics as the original data
streams and should contain events which can be analysed.

3.2 City Level Use Case

The city level use case is developed in cooperation with the Dublin City Council (DCC). Being
situated at the sea side, the Irish capital Dublin is among the most jammed cities in Europe
[Tom13]. Thus, first interviews with Dublin City Council revealed that two scenarios are of
interest for the city: flooding and tra�c jams.

For both scenarios the

1. early detection of critical events (flooding at a location or jam at a junction),

2. the estimation of information on tra�c and flooding situation for unobserved locations,
and

3. the prediction of future situations are expected.

Fulfilling these tasks supports the early warning of the citizens and the targeted control of the
urban transportation system.

The data available for INSIGHT are vehicular counts derived from automatic tra�c loops
(SCATS), Live Drive Radio messages, Positions of the buses in Dublin NRA weather data, and
Twitter messages.

The data sources will be described in Section 4 whereas here, we show its temporal avail-
ability. The formats of the data are either spatio-temporal time-series or trajectories.

In the event detection, the events (flooding or jam at a location) have to be derived from
data streams. This comprises learning of the conditions to raise an event and detection of its
spatial extent. The automatic explanation of an event (especially in case of jams) provides
useful insights for the city council to improve tra�c control.

The estimation of information for unobserved locations is crucial to the DCC. In this task,
spatio-temporal time series, denoting the tra�c situation and flooding situation for the city
of Dublin, have to be derived from the incoming spatio-temporal time series and trajectories.
The crowdsourcing application and uncertainty handling from WP3 should be incorporated to
achieve reliable information on tra�c situations and flooding situations in the city of Dublin.

The prediction of tra�c or jam situations for the future is required in order to control the
transportation system. Next, we describe the data sources briefly and derive more detailed
tasks from the expectations of the DCC.

In addition, the INSIGHT system should provide individuals (i.e. registered and subscribed
persons) with situation-dependent information
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3.2.1 Availability of Test Data Samples

For the Dublin use case the following historical data samples are available: (1) NRA weather
data, (2) Twitter data, (3) floating car data from the buses derived via SIRI.VM interface
[SIR08], (4) Live Drive Radio [Liv13] messages and (5) vehicular counts derived from the
already installed SCATS system [SCA13]. For a description of the data sources and output
formats, please see Section 4. The temporal availability is shown in the Figure 2.

2012 2013

01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05

NRA Weather

wunderground weather

Twitter Data

Live Drive Radio

SCATS I SCATS II

Bus I Bus II Bus III

Figure 2: Data Availibility (per month) for Irish City Level Use Case Scenario, City of
Dublin.

3.2.2 Data Quality Issue

A first inspection of the data identified some strange artifacts in few data samples. For
example, the bus data set contains straight lines of points which may indicate interpolation of
the raw data points.

The coordinates of the sensor locations in the SCATS data are sometimes assigned incor-
rectly. This causes errors in the intersection assignment. Also, tra�c directions are missing.
Therefore sensor information for one particular junction but di↵erent lanes cannot be directly
joined.

The analysis and preparation of the data quality and understanding of the pre-processing
steps is an important prerequisite for further method development. Jointly, the INSIGHT
consortium focuses on this task. We examine filtering methods for trajectory data to remove
outliers. Tra�c directions can be determined in the preprocessing step that fetches the data
from the SCATS system.
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3.2.3 Task I - Model Current Situation

We want to model normality in order to detect changes. Also, we want to achieve a complete
picture of normality.

In order to get insights on routine behaviour of the people, we extract regions with sim-
ilar temporal distributions of tra�c flow i.e. spatial clusters of land use from SCATS data.
This supports detection of deviations from normality and provides information on people’s
preferences in case of unexpected events.

For completing the picture of normality, extraction of spatio-temporal time series on tra�c
flow for unobserved locations is important. We address the task with a method similarly
to Kriging [Kri51] that models the pairwise covariances among the tra�c flow at di↵erent
locations. In contrast to Kriging, the model in [LXMW12] incorporates in the covariances
among the tra�c flow not just distances of the locations but the centrality of the streets
in the street network and the probability to co-visit both locations. The uncertainties at
unobserved locations are reduced by incorporation of crowd sourced data (information on
tra�c jams, measurement of number of cars, trajectories). The incorporation of user feedback
links to WP4 and their crowdsourcing and uncertainty handling. An example of how social
media users could be utilized under this crowd-sourcing setting is described in [VGBK13a].

With the spatio-temporal time series from SCATS, weather and Twitter we adjust a classi-
fication model to the normal behaviour in order to detect outliers. We exploit usage of recently
developed core vector machines for distributed data streams [SBDM13].

3.2.4 Task II - Event Detection

From the incoming spatio-temporal data streams (SCATS, Live Drive Radio, Twitter, weather)
and trajectories (bus data) we detect automatically the tra�c jam and flooding events for the
DCC. The aim is to use the information on tra�c and flooding events for early warning and
smart tra�c control (e.g. after detection of a flooding event on a road, an alternative route
on a parallel road can be proposed).

The task splits into

1. identification of the conditions in the data streams for raising an event and

2. extraction of its spatial extent.

With the classification model from previous task (core vector machine for vertically dis-
tributed data [SBDM13]) that identifies normal situations in the data stream we aim at de-
tecting anomalies. We create spatio-temporal clusters of Twitter messages and Live Drive
Radio messages (using a density based clustering e.g. DBSCAN [EKSX96]) with tra�c and
flooding related topics to inspect spreading of relevant messages over certain locations and to
extract the spatial extent of derived events. The explanation of an event from incoming data
streams is a link to WP3, focussing on complex event processing.

3.2.5 Task III - Prediction

For early event detection and decision support, we predict future values of the incoming sensor
data using graphical models, presented in [PLM13]. Also the derived spatio-temporal time
series, e.g., the tra�c situations are predicted for future time periods.
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3.2.6 Task IV - Geo-coding, Map Matching

The Live Drive Radio messages and some Twitter messages contain spatial information (e.g.
the congestion state of a road) but do not provide geographic coordinates.

We identify the spatio-temporal coordinates from the spatio-temporal time series in order
to incorporate the data in analyses, see Section 5.1.

4 Data Format Descriptions

NB: This section is shared by both Deliverables 2.1, 3.1, and 5.1. It elaborates upon the listing
of data sources in Deliverable 6.1.

In the city-wide use cases, the inputs to the system include map data, traces of vehicle
movement (e.g. buses), vehicle-count data in the Sydney Co-ordinated Adaptive Tra�c System
(SCATS) format, weather reports, twitter streams, and user feedback. The primary outputs
are Alerts and Events; Surveys and Rewards are also output as intermediate steps in soliciting
feedback from citizens. The system also produces Routes based on the up-to-date road-
segment availability and travel-time estimates in response to requests from users, typically
citizens. This section describes the data format of the testdata provided for analysis and
presents the format of the output. For a comprehensive description (including intermediate
data) see Deliverable 2.1.

In the nation-wide use case, the inputs to the system include map data, event descriptions
and coordinates, as provided by the BBK, mobile phone usage data, twitter data, weather
reports, and user feedback. The primary outputs are Alerts and Events; Surveys and Rewards
are also output as intermediate steps in soliciting feedback from citizens. The system also
produces Routes based on evacuation planning using up-to-date road-segment availability and
travel-time estimates. This section describes the data format of the testdata provided for
analysis and presents the format of the output. For a comprehensive description (including
intermediate data) see Deliverable 2.1.

Considering the overlap of the inputs and outputs in all use cases, we present the inputs
and outputs next. Notice that geo-localised parts of the input and output store the longitude
and latitude in WGS84 format used by the Global Positioning System (GPS).

4.1 Input Data Sources

In this section, we detail each of the input data sources we expect the system to ingest.
For details of the decentralised, generic architecture which will be employed to manage these
sources, see Deliverable 2.1, Section 6.

4.1.1 Vehicle-count data (SCATS)

The Sydney Co-ordinated Adaptive Tra�c System provides information on vehicular tra�c
at fixed sensor locations as spatio-temporal time series. The SCATS data are produced by
aggregating the primary source data that are collected by the Dublin SCATS tra�c sensor mon-
itoring system.The primary data are given in the Strategic Monitoring (SM) format [CM03].
Each sensor sends messages with varying frequency (depending on the location, conditions and
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other factors). The SM format specifies the message parameters. These messages, in addition
to the information that is maintained after the aggregation to the SCATS format, includes
additional system information that is not used in our analysis. This SCATS data [SD80] is a
sequence of tuples (z,m, t), where z is a geographic location of the observation (the sensor
position), m is a metric and t is an integer. The location is either detector index, or a vector
consisting of of a number of elements, including the GPS coordinates of the detector. The
metric m contains:

• aggerateCount: aggregated vehicles volume count on the arm,

• flow : flow ratio calculated as the volume divided by the highest volume that has been
measured in a sliding window of a week.

Integer t element is the timestamp of the 5 minute interval in POSIX time, i.e. the number of
microseconds that have elapsed since 00:00:00 Coordinated Universal Time (UTC), 1 January
1970. This can be seen as a flattening of the historical data in the data model displayed in
Figure 3.

Segment saw

saturation count

SensorArm

armNumber

armAngle

willSee

count

DesignatedTimeInterval

Figure 3: An idealised model of SCATS data.

In practice, data are imported into this model from two di↵erent data sources. For a period
of time in 2012, the data have been recorded5 as a sequence of following tuples:

• streetSegId : a unique identifier for a street segment ID,

• armNumber : an identifier for the arm on a street segment,

• armAngle: bearing of the arm,

• gpsArm: GPS position 20 meters into the arm,

• gpsCentroid : GPS position of the centroid of the intersection.

5
available at:

http://www.dublinked.ie/datastore/server/FileServerWeb/FileChecker?metadataUUID=

a5aaaf4ca2404e0ca02e21fc0bdf1882&filename=SCATS-Dublin.zip
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• aggerateCount: aggregated vehicles volume count on the arm,

• flow : flow ratio calculated as the volume divided by the highest volume that has been
measured in a sliding window of a week.

These samples are captured at 6-minute intervals. The more recent data from 01/01/2013
onwards are sampled every minute and are provided by DCC and IBM as a sequence of following
items6:

• year, month, day, hour, minute: denoting the timestamp

• site: measurement location

• strategicApproachLink

• isLink

• detector index : index of the detector

• degreeOfSaturation: flow/capacity

• flow : current flow value

These samples are used in conjunction with a file, detectors.csv7, which contains the coordi-
nates. The detector index from the sequence refers to the lane number in the detectors.csv
file.

4.1.2 Traces of vehicle movement (Bus GPS)

In principle, the GPS data are a sequence of vectors y
z,t

, where z is a tra�c object, e.g. a bus
with an on-board GPS receiver, and t is an integer, e.g. the POSIX time of the acquisition.

In practice, the the data are imported from three very di↵erent data sources, even in the
case of Dublin. Instead of plain coordinates, there is a more complex data model based on
the General Transit Feed Specification. There, a vehicleJourney (or “route” in GTFS) is a
particular instance of a journeyPattern starting at a given time. A journeyPattern is a sequence
of two or more stops. In between each two stops, there are one or more blocks within a trip
(or “segments” in GTFS and elsewhere)8. Notice that the production time table starts at 6am
and ends at 3am in Dublin.

The first source of GPS traces captures the movement of buses in Dublin in the period
from 01/02/2012 till 30/04/2012 (except the days 10th till 12th February 2012) and contains
the following values:

6
available at:

svn+ssh://madgik/svn/source/WCITY.zip

svn+ssh://madgik/svn/source/CCITY.zip

svn+ssh://madgik/svn/source/SCITY.zip

svn+ssh://madgik/svn/source/NCITY.zip

7
available at:

svn+ssh://madgik/svn/source/detectors.csv

8
Please see https://developers.google.com/transit/gtfs/reference for a detailed reference.
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• timestamp: timestamp microseconds since 01/01/1970 00:00:00 GMT,

• lineId : bus line identifier,

• direction: a string identifying the direction,

• journeyPatternId

• timeFrame: the start date of the production time table (in Dublin the production time
table starts at 6am and ends at 3am),

• vehicleJourneyId : a given run on the journey pattern,

• operator : bus operator, not the driver,

• congestion: boolean value [0=no,1=yes],

• gpsPos: GPS position of the vehicle,

• delay : seconds, negative if bus is ahead of schedule,

• blockId : section identifier of the journey pattern,

• vehicleId : vehicle identifier,

• stopId : stop identifier,

• atStop: boolean value [0=no,1=yes].

The second source of GPS traces captures the movement of buses in Dublin during a
part of November 2012 (06/11/2012 till 30/11/2012) and contains tuples of the following
elements:

• timestamp: timestamp microseconds since 01/01/1970 00:00:00 GMT,

• lineId : bus line identifier,

• direction: a string identifying the direction,

• journeyPatternId

• timeFrame: the start date of the production time table (in Dublin the production time
table starts at 6am and ends at 3am),

• vehicleJourneyId : a given run on the journey pattern,

• operator : bus operator, not the driver,

• congestion: boolean value [0=no,1=yes],

• gpsPos: GPS position of the vehicle,

• delay : seconds, negative if bus is ahead of schedule,
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• blockId : section identifier of the journey pattern,

• vehicleId : vehicle identifier,

• stopId : stop identifier,

• atStop: boolean value [0=no,1=yes].

The third source of GPS traces captures the movement of buses in Dublin during January
2013 (01/01/2013 till 31/01/2013) and contains tuples of the following elements:

• timestamp: timestamp microseconds since 01/01/1970 00:00:00 GMT,

• lineId : bus line identifier,

• direction: a string identifying the direction,

• journeyPatternId

• timeFrame: the start date of the production time table (in Dublin the production time
table starts at 6am and ends at 3am),

• vehicleJourneyId : a given run on the journey pattern,

• operator : bus operator, not the driver,

• congestion: boolean value [0=no,1=yes],

• gpsPos: GPS position of the vehicle,

• delay : seconds, negative if bus is ahead of schedule,

• blockId : section identifier of the journey pattern,

• vehicleId : vehicle identifier,

• stopId : stop identifier,

• atStop: boolean value [0=no,1=yes].

4.1.3 Map Data and Transit Graph (OSM, OTP, GTFS)

The street map is represented as a graph, where vertices represent important locations in
space for a given means of transport (e.g. road intersections for cars). Each edge represents a
means of traversing between the vertices, which can involve actual movement (e.g. between
two intersections) or waiting (e.g. at a bus-stop). The graph is illustrated in Figure 4.

The overall data model is rather complex, but closely parallels those used by Open-
StreetMap, OpenTripPlanner, and the General Transit Feed Specification; we hence direct
the reader to the reference documentation for those.

Our custom extensions to the standard format consist of:

• the travel-time estimates, which correspond to the weights of the edges in the graph
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Figure 4: The vertex-based transit graph. Cited in verbatim from https://github.com/
openplans/OpenTripPlanner/wiki/GraphStructure.
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Figure 5: An illustration of a delay function, which gives the travel-time along a segment of
a road as a function of its utilisation, i.e. the ratio of the number of concurrent users to the
maximum thereof.

• the altitude data, which correspond to weights of the vertices in the graph

The travel-time estimates are stored as delay functions and vehicle count data. A delay
function gives the travel-time along a segment of a road as a function of its utilisation, i.e.
the ratio of the number of concurrent users to the maximum thereof. The delay functions are
computed from the vehicle-count data (SCATS) and traces of vehicle movement (Bus GPS)
described above. The vehicle-count data are stored in the format described previously, c.f.
Figure 3. See Figure 6 for the entity-relationship digram.

The altitude data (“a model of terrain”) improves the modelling in the flooding use case.
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The model of terrain for Germany is based on the OpenTopoMap, http://opentopomap.
org/, which in turn is based on the STS-99 Shuttle Radar Topography Mission (SRTM)
data set, which has been collected in a remote sensing exercise on board Space Shuttle En-
deavour in February 2000. Elsewhere, one can utilise NASA’s ASTER Global dataset at
http://www.echo.nasa.gov/. ASTER (Advanced Spaceborne Thermal Emission and Re-
flection Radiometer) orbits the Earth on board the Terra satellite since 1999 and collects data
since February 2000. The dataset collected by ASTER is known also as the Global Digi-
tal Elevation Model. In either case, one obtains an approximate elevation for each point of
interest.

Segment took

date duration

User

willTake

duration

DesignatedTimeInterval
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Figure 6: The travel-times data model.

4.1.4 Weather Reports (NRA, WU)

Ireland’s National Roads Authority (NRA) maintains a network of sensor stations around Dublin
city, each of which samples a variety of environmental factors at ten-minute intervals. As part of
the initial data-collection e↵ort, we have created a tool which pulls information from thirteen
of these stations into a central database. At present, our focus is on creating a historical
archive for future exploitation rather than providing the data in real-time, and as such the
data is harvested only once per day; this can, of course, be changed at a later date to account
for the project’s evolving requirements. The database also contains meta-information about
the various data points, allowing human-readable reports to be generated with ease.

The database can be queried using standard SQL. It is currently only accessible from within
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IBM, but it can be easily migrated to another location as necessary. Figure 7 illustrates the
structure of the database.
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Figure 7: NRA data model. The field CODE indicates the type of reading. The SENSOR-
DATA table provides a full-text description of each code, along with its associated unit of
measurement. In cases where the code’s unit is a status value, LEGEND.MEANING pro-
vides a plain-English explanation of each possible status.

The full list of stations from which these sensor data are drawn is provided in Table 1, while
some of the more interesting points captured by the database are highlighted in Table 2. A
visualisation of some of this data is shown in Figure 8. We envision this database as being of
particular relevance to the Flooding use case - an event could be triggered if, for instance, total
precipitation was observed to deviate significantly from trend over a given period - but data
on the changing state of the weather would naturally be of use in explaining tra�c congestion
patterns as well.

Alternatively, there are weather data available at wunderground9. These can be queried
for weather information at a particular coordinate, e.g. Dublin, posing the following request
(the <key> has to be generated in advance by registering to the wunderground website):

http://api.wunderground.com/api/<key>/hourly10day/q/Ireland/Dublin.json

As result, a json object is returned which contains the following fields:

9
http://www.wunderground.com
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Table 1: NRA stations

Dublin Port Tunnel M1 Drogheda Bypass
M1 Dublin Airport M11 Bray Bypass
M4 Enfield M50 Blanchardstown Master
M50 Blanchardstown Slave M50 Dublin Airport
M50 Sandyford Bypass Tipping Bucket M50 Sandyford Master
M7 Newbridge Bypass M7 Portlaoise Bypass
N81 Tallaght

Table 2: Illustrative NRA datapoints

Code Description Unit
CL Cloud State Status Code: Clear, Cloud, Cloud and Rain
PW Present Weather Status Code: 0 (unobstructed) to 99 (tornado)
WL Water Layer mm
SL Snow Layer mm
IL Ice Layer mm
RH Relative Humidity %
PR Precipitation Total mm
RI Rain Intensity mm/h
P Pressure hpa
T Air Temperature �C
TS Surface Temperature �C
VI Visibility m
WD Wind Direction �

WS Wind Speed m/s
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Figure 8: NRA data visualisation. Arrows indicate wind speed and direction; heatmap blobs
indicate cumulative rain intensity at each station, in mm/h

• FCTTIME : the time of the weather forecast

• temp: the temperature

• condition: the weather condition, e.g. “Rain”

• icon: an icon to depict on a map, e.g. “rain”

• icon url : link to an icon for graphical user interfaces

• humidity : humidity in percent

• feelslike: the perceived temperature

• and many undocumented fields.

4.1.5 Short messages (Twitter)

Further input to the system is provided by Twitter, a short messaging service. Twitter issues
a stream of messages (”tweets”) up to 140 characters long, optionally including one or more
”hashtags” - that is, arbitrary words preceded with a hash character, used to denote topics
to which the message relates (e.g., #dublin). Tweets may also include links to websites and
other auxiliary data; see Figure 10 for some examples.

The Twitter web application and its public API allow developers to retrieve a substream of
messages based on a given set of criteria; specifics hashtags, for instance, or tweets produced
by a certain user, etc. The stream is a sequence of tweets, which primarily consist of:
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• tweetId : a unique tweet identifier

• date: integer, POSIX time of the tweet publication

• twitterUserId : twitter user identifier

• coordinate: geo-localization of tweet

• messageText: tweet text.

The stream is indexed by hashtag and clustered according to a given set of criteria (e.g. GPS
co-ordinates). See Figure 9 for the entity-relationship digram.

The Twitter substream generated within a geographical area of interest can be isolated by
following relevant users (e.g., @livedrive) and monitoring certain hashtags (e.g., #dublin).
Note that the input stream is not limited to users who are already known to the INSIGHT
system; all tweets by Twitter users who are publicly tweeting in the area of interest are
collected.

Tweet

messageText
mesageDate

tweetId

coordinate

twitterUserId

contains HashTag

assigned TweetCluster

Figure 9: A data model of tweets.

In more detail, we can access the following fields in the Twitter stream:

• tweetId : a unique Tweet ID, assigned by Twitter

• twitterUserId : a twitter-ID of Tweeting user. Unique per Twitter account.

• twitterUserScreenName: mnemonic user name (login name)

• latitude: geographic latitude of sending device

• longitude: geographic longitude of sending device

• messageText: the actual tweet in raw textual form. It may include non-ASCII characters.

• messageDate: timestamp of message sending. Format ’YYYY-MM-DD hh:mm:ss’

• location: tweet location place name, for Gazetteer lookups
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Wooow!! Das Wasser vom Rhein ist ziemlich hoch!!

#AltLostau ist jetzt nur noch mit dem Boot erreichbar
- Schuldamm wurde ueberspuelt #Hochhwasser #lostau

http://t.co/rfM6ylcBRT

In #Lostau steht das Wasser jetzt ca. 1km hinter dem
Deich in den Kellern der Haeuser #Hochwaser #Madeburg

Bodensee-Pegel: 343,6 cm! - http://t.co/JWhYfRSk -
Hochwasser-Infos: http://t.co/dG7uuYK1

Figure 10: Sample Tweets mentioning floods in Germany in July 2013. Notice the mis-
spelled words.

• countryCode: ISO short country code (two characters)

• tokens: always null

• retweetStatusId : referred (tweetId) to embedded retweet (original tweet). 0 if not a
retweet, -1 if not set or invalid value.

• isRetweeted : boolean flag (’y’—’n’) if tweet contained a retweet

• replyStatusId : referrer (tweetId) if tweet is-in-reply-to. -1 if not an answer-to tweet.

• replyUserId : referrer (twitterUserId) to author of original tweet being answered. -1 if
not an answer-to tweet.

• isFavorite: Boolean flag (’y’—’n’) if tweet was marked as favorite

• followersCount: Number of Twitter users currently following tweet author

• followingCount: Number of Twitter users the tweet author currently follows

For Dublin, the real-time stream follows the #dublin hashtag. Twitter data sets are
available for the period from 05/11/2012 till 24/07/2013. Batch data samples are retrieved
from the Twitter API using a spatial query.

Further for Dublin, The Live Drive Radio data set results from Twitter messages sent
by people driving in Dublin that report tra�c hazards to the local radio. The messages are
derived from the Twitter API by following the @livedrive tag and are available for a period
from 01/02/2012 till 30/04/2012 as a table10 with following fields:

• messageDate: the time of the message

10
available at:

svn+ssh://madgik/svn/source/LiveDriveRadioMessages.txt
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• messageText: the text message

For Germany, geo-coded Twitter messages are available for the period from 22/11/2012 till
24/07/2012. The data are collected by querying the Twitter API for tweets with geographical
coordinates located within a given bounding rectangle. After the collection, the tweets have
been additionally filtered by checking the country code and whether the coordinates are indeed
within the bounding rectangle of Germany, since the collected data also contained messages
from the Netherlands and other countries as well as messages with the country code of Germany
but located outside Germany, which means that the Twitter API may not provide exactly what
you request. The final dataset that has been collected consists of about 6 million records.

For the summer 2012 floods in Germany, messages were retrieved by following the hashtag
#hochwasser in Twitter API. This resulted in 178516 tweets. The data is available for the
period from 04/06/2012 till 02/07/2012. Coordinates are available for 3975 tweets (about
2% of the data set).

4.1.6 Mobile phone data (IAIS)

The raw data is provided by Vodafone Germany. Vodafone (VF) is one of the largest mobile
communications companies in Germany serving more than 32 Mio. customers across the
country in 2012/13. It owns and operates a nationwide mobile network and o↵ers a wide
range of telecommunication services to its customers.

The network itself consists of more than 50.000 cells for di↵erent frequency ranges.

Figure 11: Network coverage of Vodafone in Germany. (a) shows that GSM services are pro-
vided in all blue colored areas, (b) visualizes the multi-layer structure of the mobile network.
Source: vodafone.de, 08/2013

The network itself consists of more than 50.000 cells for di↵erent frequency ranges (see
Figure 11). The coverage of the mobile network varies depending on the topology and land
use of an area. In total it covers most of the populated areas. The mobile network of
Vodafone operates on all three frequency ranges GSM+GPRS, UMTS, and LTE. This multi-
layer structure of the network makes it fairly robust against failures and has proven to operate
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through disasters (e.g. during Hurricane Sandy, earthquake in Japan and Haiti). Especially,
SMS services have proven their operation during disaster situations. GSM cells, for example,
can extend their range up to 40 to 50km2

Figure 12: Data stream originating in an idealised mobile network.

Based on the location of the mobile device it will try to establish a permanent connection
to the network via the Base Transceiver Station. Each time a mobile device becomes active
in the network, e.g. to make or receive a phone call or send an SMS, an active connection is
established. A group of antennas (BTS) is controlled by a Base Station Controller (BSC). BSC
monitor network connections and are responsible for power control or initiations of Handovers
(switching between two cells). If, for example, the Handover involves two BSC the Mobile
Switching Station (MSC) gets involved. The MSC also keeps track of which device (customer)
is logged on the system updating the Home Location Register (HLR) and the Visitor Location
Register (VLR). Thus the system (MSC) always knows where a device is located in order to
provide phone and data services.

The flow of data is described in Figure 12. The mobile devices usually choses the cell
tower with the best reception and expected quality. While negotiating with the controllers
of the antennas the current load of the antenna is taken into account. Therefore the carried
load on service-providing elements such as telephone circuits or switching equipment has to
be measured. This is part of the quality and network integrity measures any mobile operator
has to implement.

One way of measuring the carried load of an antenna is by calculating the network perfor-
mance parameter called ’Erlang’ (Erl) for a given time interval l. Normalized carried tra�c
(load) in Erlang is related to the call arrival rate, �, and the average call duration, h, by:

Erl =
�h

l
(1)

The tra�c load is aggregated hourly with l = 60. All data are fully anonymized information
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on the usage of a network. The higher the Erlang, the more network tra�c is registered for
one cell and hour. Note that the Erlang value is dimensionless.

The dataset consists of the Erlang values for all cells in Germany. They cover the frequency
ranges 900 MHz and 1.800 MHz. The data is available since April 2010 and has an temporal
resolution of one hour. Periods of vacation, holidays etc. are contained in the data as well as
tra�c events and emergency situations like the summer flood in Germany 2013. Each record
(tuple) in the database has the following structure:

• timeInterval : hourly timeslice (range)

• cellId : unique identifier of a cell

• erlValue: Erlang value

• sourceInformation: origin of the data and information on the source

To relate this data with the street network and other spatial data (e.g. Points-of-Interests)
a geometry of the coverage area of each cell is part of the dataset. Di↵erent approaches exits
to represent the coverage area: approximation, probability based, tessellation. Figure 13 shows
a spatial probability based calculation of a coverage area. The fragmented geometry results
from combined a↵ects of network topology and topography of the area.

Figure 13: Result of a theoretical coverage calculation. Colors represent the probability that
a mobile device is connected to the shown antenna (red=high probability, blue=low proba-
bility), Source: courtesy of Swisscom

This probability-based coverage model is extremely complex and computationally expensive.
Ellipsoid approximations have been developed to reduce complexity. Also tessellation like
Voronoi tessellation are commonly used by mobile operators and network vendors (see Figure
12) We operate with all three types of representation models. The structure is:

• cellId : unique identifier of a cell

• geometry : point, polygon or multi-polygon shapes of a cell as a set of vertices (X-Y-
coordinates in a spatial reference system, WGS84) encoding the covering area

A description of the data model is given in Figure 14.
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Figure 14: A simplified data model of mobile network data.

4.1.7 Tra�c Frequency Data (IAIS)

Based on the Navteq street network of entire Germany with over 6.8 Mio. street segments,
Fraunhofer has build a mobility model that predicts the average number of cars and pedestrians
per hour. The primary objects of interest are street segments, which are parts of a street
between two intersections. Each segment possesses a geometry object and has attached
information about the type of street, name of street, direction, speed class, and length (see
Figure 15).

The model integrates various sources of data that is linked to mobility. The multi-source
approach comprises several sources of di↵erent quality and spatial resolution. For a subset
of street segments frequency counts derived from video data are available, in total around
100,000 measurements for Germany. For some cities more than 2,000 measurements exists,
while for others only a few dozens.

Each segment was measured at 4 di↵erent days and 4 di↵erent times between 7am and
7pm. Each measurement lasts 6 minutes. The number of cars and pedestrians were counted
manually. For validation purposes we have compared video measurements with long-term
tra�c counts made by the federal state at number of locations where such measurements
coexist. The correlation is very high (0.97), demonstrating that this kind of measurements
can give accurate data for the purpose at hand.

In addition, demographic and socio-economic data about the vicinity of street segment was
used, e.g. age structure, gender distribution, employment. It usually exists for o�cial districts
like post code areas. We also integrated supplementary manual tra�c counts at neuralgic
points in the street network.
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The resulting dataset is structured:

• streetID: unique identifier of the street network

• freqCar : average frequency of cars

• freqPed : average frequency of pedestrians

FrequencyMap

streetId

avgFrequencyCar

avgFrequencyPed interacts StreetNetwork

streetIdnametype

restrictions

speedlength

geometry

Figure 15: A simplified data model of the frequency map for Germany.

4.1.8 Event descriptions (BBK)

During the recent floods in Germany, BBK collated a list of all events mentioned in their daily
reports. The resulting table comprises the events that were reported within the time period
from 28/05/2013 till 16/06/2013. It contains the following fields for every event:

• Incident: the event that occurred

• Location: textual description of the location of the event

• Time: date and time of the BBK report that broadcasted the event

4.2 Outputs

In this section, we detail each of the various outputs we expect the system to produce. These
are drawn from the use-case requirements; see D6.1 for details. We situate these outputs within
our architecture in Deliverable 2.1, Section 6. N.B.: This section is shared by Deliverables
2.1, 3.5, and 5.1.

4.2.1 Events

Event objects are one of the possible outputs of the INSIGHT system. The event object is
composed of:

• eventId : unique identifier

• t: integer, POSIX time of the event generation

• coordinate: a position of the event in terms of GPS coordinates



Each event object is associated with a set of explanation labels and corresponding weights:

• eventId : an identifier of the event being explained

• explanationText: a text of an explanation

• explanationWeight: a weight of an explanation

• explanationCoordinate: a linked position

but may be also stored as a write-once large object (BLOB) for each event. See Figure 16
for the entity-relationship diagram. Each weight represent the system’s belief, based on all
available measurements, that the associated explanation label is correct.

Event

eventId

Time

Geometry

explains

Weight Geometry

Explanation Text

Figure 16: A data model of events.

4.2.2 Alerts

As a broadcast medium from the INSIGHT system to the people, location dependent events
(so-called alerts) can be provided to every person individually. The person can subscribe to
certain types of alerts by specifying the radius within which the alerts of a particular type are
of interest. Alerts are issued for a certain period at a certain location. When the user enters
within the pre-specified radius of the location, where an alert of the type user opted in for is
active, the alert is sent to the user. See Figure 17 for the entity-relationship diagram.

4.2.3 Routes (OTP)

The system provides situation dependent routing capabilities and routes computed by the
system can be provided. In the tra�c scenario, this may consist of requested routes between
a specified origin and destination, computed using real-time travel-time estimates. In the
flooding scenario, a central authority may issue an evacuation plan, out of which a route is
distributed to each user.

The OpenTripPlanner data model is employed to output routing information to the user,
as suggested by the entity-relationship diagram in Figure 18. A trip plan consists of one or
more itineraries. Each itinerary consists of one or more legs, which specify how to get from
one place to another.
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Figure 17: A data model of alerts.
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Figure 18: A data model of trip-planning.



4.2.4 Actions (SCADA)

The system may also issue actions to remotely controllable devices. In the city-scale tra�c
scenario, this might involve changing the pattern of tra�c lights in order to prevent congestion
bottlenecks. In other scenarios such as the nationwide emergency use case, the role of actions
may be limited or absent, since the system may be intended purely for monitoring, co-ordination
and information-provision purposes. Our model of actions follows the data model suggested
by standards in supervisory control and data acquisition (SCADA), notably IEC 60870. Each
device is assigned an address, which can be an IP address, and a port, which can be 2404,
as per IEC 60870 part 5, 104. The action is embedded in an application service data units
(ASDU), which has a rich structure (type identification, variable structure qualifier, cause of
transmission, common address, information object address, information element, time tag, if
used), as specified in IEC 60870 part 6. Notably, we aim to use single commands (SCO),
such as on or o↵, and set point commands, which carry a floating point number. See the
entity-relationship diagram in Figure 19.

Station
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isSent

date

Action

ISA

SingleCommand SetPointCommand

number

Figure 19: A data model of actions.

5 Analysis

Whereas previous sections described the use case scenarios and the derived tasks, this section
focuses on first analyses and ideas to tackle the tasks. At this point we do not structure by
the use case scenarios separately but by the performed tasks, as the tasks in the scenarios are
similar. The data samples have been provided only recently, thus most analyses are work in
progress. However, the following brief presentation highlights our progress.

5.1 Geo-coding Live Drive Radio

Resulting from a Twitter stream, the Live Drive Radio data items (compare Section 4.1.5)
describe geographic information without exact WGS84 coordinates.

A method for geo-coding this data set was developed by IBM [DLB13] which utilizes word
occurrences and word frequencies. After a data cleaning, i.e. removal of punctuation and
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extension of abbreviations, location based words are extracted. Next, these words are used
to construct N-grams (tuples of possible word combinations). These N-grams are weighted
and combined to a Lucene query [HHS07]. As result, terms that identify the location are
returned. The lookup of coordinates for these terms provides the coordinates for the text
message [DLB13].
The results of the analysis are available to the consortium within the last three columns in the
data file11:

• search output: the spatial identifier (e.g. Kilmacud Road Lower),

• wgs84 coordinates: the position,

• explanation: type of the hazard (e.g. collision).

Though this method is evaluated in [DLB13], and performs well even in di�cult cases,
e.g., the message referring to a jam close to a junction in Figure 20. Future work will improve
the geo-coding further.

Figure 20: Exemplary Query (left) and Result (right) of Geo-Coding. The corresponding
junction to the message is correctly identified.

5.2 Extraction of Normal Behaviour from Twitter Users - a Visual
Analysis approach

In contrast to a visualization of analysis results, visual analytics combines interactive visual-
izations with automated analysis techniques. Thus, visual analytics focuses on the division of
labour between humans and machines for the following reasons:

11
available at:

svn+ssh://madgik/svn/source/LiveDriveRadioMessages.txt
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• computational power amplifies human perceptual and cognitive capabilities,

• visual representations are the most e↵ective means to convey information to a human’s
mind and prompt human cognition and reasoning.

The process is facilitated by the “Visual Analytics Loop” [KAF+08] that applies visualization
and models as well as their entanglement to data in order to derive knowledge which, in turn,
leads to novel data (see Figure 21).

Figure 21: Visual Analytics Loop [KAF+08].

In recent work, Fraunhofer IAIS successfully applied visual analytics methods to Twitter
messages in Seattle [AAB+13]. This analysis workflow has been applied to geo-coded Irish
Twitter messages from 05/11/2012 till 25/04/2013 in order to detect daily routines of the
Twitter users. The considered data set contains 5,213 Twitter users generating 1,637,346
position records. The trajectories of these users are plotted in Figure 22.

In a first step, personal places were extracted for each trajectory separately. In order to
guarantee privacy, clusters of the messages were created with a maximal radius of 150m,
clusters with less than 5 elements were removed. For every cluster polygons were constructed
as the convex hull of the points in conjunction with a small spatial bu↵er (since some hulls
were no polygons, but points or lines). The resulting personal places are depicted in Figure 23.
In the following the distribution of the number of personal places per person is inspected. As
Figure 24 shows, the majority of people (1,158) has two personal places.

In a subsequent step, the messages and their spatial distributions are also considered.
Thus, topics are defined as list of related words (compare Figure 25). Using these lists, each
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Figure 22: Trajectories of Twitter users plotted with 99% transparency (left) and 95%
transparency (right).

message that belongs to a personal place (14.3% of all messages) is assigned to one or even
multiple topics. Thus, message counts per topic can be derived, see Figure 26. In result every
personal place is connected to a distribution of topics, these can be visually inspected, see
Figure 27. However, some places did not get topic summaries (about 20%) and topics are
very much mixed. Moreover, the topics are not necessarily representative for the type of the
place, e.g., the topics near a supermarket: family, education, work, cafe, shopping, and many
others.

After the spatial distribution of the messages, the temporal distribution has been inspected.
Figure 28 depicts the number of messages aggregated per day time hour (abscissa) and location
(grey connecting lines in the chart). The aggregates are computed for working days and
weekend separately.

In order to extract some semantics of the locations from the temporal profile, these profiles
are compared to exemplary temporal profiles of di↵erent activities using dynamic time warping
[Sen08]. The exemplary profiles can be extracted from the previously generated topics, see
Figure 29. In result, the places with a high similarity to a particular topic can be extracted, for
example the locations identified to be similar to “breakfast” are also highly similar to the topic
“transport”, and “lunch”. This indicates that dynamic time warping is not ideally suitable for
comparison with the exemplary time profiles, in contrast it is required to limit stretching and
shifting in the comparison. This is subject to future investigations.

In summary, currently available tools did not achieve good results in semantic interpreta-
tion of personal places extracted from Twitter data. Necessary improvements are a better
similarity function for time series, a more comprehensive ontology for recognition of message
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Figure 23: Extracted Personal Places from Twitter messages with di↵erent Zoom Factor.

topics and a better computational mechanism for combining time series similarity scores with
the topical features. Future work may just focus on public places, since we expect that topics
are easier to interpret, for example we could focus on foursquare check-ins. We will also take
into account additional data sources, e.g. relative positions of places in daily trips or land use.
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Figure 24: Number of Personal Places per Person. The ordinate axis denotes the count of
persons having exactly the number of personal places denoted at the abscissa.

Figure 25: Topics and Related Words.
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Figure 26: Message Topic Distribution.

Figure 27: Topics Summarized by Personal Places.
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Figure 28: Temporal Message Distribution.

Figure 29: Exemplary Temporal Profiles of Topics.
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5.3 Location Analysis of Twitter Users in Dublin

For event detection and disaster confrontation it is of significant importance to utilize the
location information of Tweets. However, only a small portion of Twitter users declare their
location and only a tiny fraction of tweets are geo-located. In this section we12 present a
preliminary analysis of the Twitter user behaviour in the context of location information.

We have obtained tweets posted in the geographical area of Dublin and collected all the
users who tweeted. We created the “friendship graph” of these users, considering as friends
users that are bi-directionally connected (both are followers of each other). We analysed the
location field of users who tweeted, to see whether they report Dublin as their location (See
Figure 30).

The first column represents the whole set of users, while the second one represents the
largest connected component of the graph. The third column represents the users who have
more than 5 edges in the graph, while the two last columns depict users who have tweeted
more than N times, in a period of T hours. In Figure 30 we count as “Dublin”, users who
have the word “Dublin”, or areas from the city in their location field. “Null” simply means
that these users left their location field empty.

The next figure (Figure 31) represents the same data, but for all the users that tweeted
from the Dublin area according to the approximate geo-location (bounding box). Both figures
exhibit a similar behaviour, in which we can clearly observe that the percentage of users outside
of Dublin clearly decreases if we implement some very simple heuristics. The most interesting
observation is that the percentage of users with empty locations also decreases for the same
heuristics.

For the above study, we have extracted tweets from the area seen in Figure 32. In Figure
33 we can observe the same map organized in squares where the value (height-colour) in
each square represents the number of tweets. The similarity between the two maps (Virtual
based on Twitter and Natural) is obvious. The sea and mountains can be clearly distinguished
(absence of tweets). Squares represent an area of 250⇥250 meters.

The outlier in the middle (brown bar) is due to a user that is a fan of the music group “One
Direction”. In 90 days, out of the 14000 tweets in the area, this account posted approximately
12000 tweets, some of which were almost duplicates, mostly trying to get the band members
to follow her.

Finally we have performed a preliminary lexicon-based sentiment analysis. In this case the
height / colour of the bars depends of the degree of sentiment that we obtained from that
particular area square (see Figure 34).

There are a few clear outliers here as well. The red one is the same fan as before, and
the yellow one is a similar user. Tweeting mostly about their admiration for the band, they
significantly contribute to the positive sentiment of the area. The huge negative spike (below
the surface) is due to a weather service, which tweets several times a day about the weather
prediction. They use the following format to report the weather:

07:55 BST: Temp: 11.0C, Wind: 1 mph (ave), 5 mph (gust), Humidity: 91\%,
Rain (hourly) 0.0 mm, Press: 1018 hPa #iwn

12
Section provided by UoA
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Figure 30: Location Statistics from geo-located Tweets of the Dublin Area
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Figure 31: Location Statistics from All Tweets of the Dublin Area
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Figure 32: Bounding Rectangle for Twitter Data extraction in Dublin

The tweet presents negative sentiment since it contains the words “rain”, “wind” and
“humidity” that the lexicon considers as negative words.

Figure 33: Twitter Map of Dublin. Histogram depicts counts of messages per 250⇥250 me-
ters grid cell.

As a conclusion we could state that the noise in such data is a very important impediment
since users could create a large amount of content that could negatively a↵ect results and
interpretations. Therefore, it is important to include this topic to the INSIGHT’s research
agenda.

5.4 Extraction of Land use from Stationary Twitter Messages

It is crucial to create a model which represents fluctuations of people’s presence over time
for every location in normal situations. This knowledge supports detection of deviations from
normality and provides primer knowledge on people’s motivations in case of tra�c jams or
flooding events. The information on fluctuations of people’s presence for every location reflects
the typical land use per location. A normal land use is for example the use of a location for
working during day times or for clubbing at night.
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Figure 34: Twitter Map of Dublin based on Sentiment.

Recently Fraunhofer IAIS together with TUDo jointly worked on the extraction of land
use patterns from geo-referenced Twitter messages [RL13]. We focussed on a subsample of
the Twitter messages which were created by foursquare users. The messages are generated
every time a foursquare user checks itself in at a previously defined public location (e.g. a
bar, a company, a landmark). Though the messages are spatio-temporal events, the set of
all messages provides a spatio-temporal time series. Temporal profiles of these check-ins are
easily extractable as the locations (so-called venues) are limited to the locations of the venues
and are not distributed arbitrarily in space as all Twitter messages are.

The problem is to identify and cluster similar venues based on their temporal profiles and
spatial distance. We propose to utilize spectral clustering and thus deliver arbitrarily shaped
clusters. Evidence accumulation clustering is applied to deduce the parameters directly from
the data.

In a first step, the messages are aggregated per hour and venue resulting in a discrete
temporal distributions of the check-ins per venue. These profiles are compared using an
a�nity measure that compares pairwise the evolution of the time profiles (all subsequent
elements). With every similarity among two time series 0.5 is added to a similarity score, with
simultaneous increase or decrease of the series even 1.0 is added to that score. The comparison
of a venue’s temporal profile with its spatial neighbours generates an a�nity matrix, which
contains the pairwise similarities among the locations. This is subject to spectral clustering
with parameter k. Since this parameter is unknown, we use evidence accumulation clustering
[FJ02] with uniformly at random drawn k 2 (k

min

, k
max

).
As a result, we obtain spatially contiguous sets of venues with similar temporal profile. For

visualization, we construct the convex hull of each cluster and map similar colours to similar
temporal profiles and di↵erent profiles to di↵erent colours [Sam69]. The tests are performed
in the city of Cologne. The data was collected from May 2012 till October 2012. All public
check-ins within this period were used. The final data set for Cologne consists of 11,890
check-ins from 2,093 users over more than 1,008 venues. The result of this test is depicted in
Figure 35.

Future work investigates the detection of events using spatio-temporal clustering of time
series and the applicability to other data sources, e.g., the tra�c counts provided in SCATS.
Also the consideration of larger spatial areas is necessary for the nation-wide use case.
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Figure 35: Land use Clusters derived from Foursquare Messages for the City of Cologne,
Germany [RL13].

5.5 Tra�c Quantity Estimation with Movement Patterns

In order to model normal situations, it is not only important to identify regions or time slices
with similar behaviour (as previous sections focus on), but it is also important to impute values
for unobserved locations.

This task is particularly crucial for the tra�c loop data (SCATS), which is only available
for few dedicated places within the city. Available data for investigating the tra�c flow also
at unmeasured locations are the measurements (SCATS) and some prior knowledge, e.g., the
city’s tra�c network and knowledge on preferred routes by local domain experts (referring to
crowdsourcing in WP3).

Recently developed approach by Fraunhofer IAIS and TUDo [LXM13, LXMW12] proposes
a nonparametric Bayesian method, Gaussian Processes (GP) with a random-walk based tra-
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jectory kernel. We explore not only the commonly used information known from the literature,
e.g. tra�c network structures and recorded counts at some measurement locations, but also
the recorded movement sequences are considered.

So far, the method was successfully applied to industrial scenarios with pedestrians in
closed environments. During development of the proposed prototype (Section 6.1) we will
exploit usage of this method for the city level use case incorporating crowd sourced movement
behaviour.

5.6 Exploration of the Geo-coded Twitter Messages from Germany

The dataset Geo-coded Twitter messages cover the time period 22 November 2012 till 24 July
2013 (compare Section3.1.1). The data are collected by querying the Twitter API for tweets
with geographical coordinates located within a given bounding rectangle. After the collection,
the tweets have been additionally filtered by checking the country code and whether the
coordinates are indeed within the bounding rectangle of Germany, since the collected data
also contained messages from the Netherlands and other countries as well as messages with
the country code of Germany but located outside Germany (which means that the Twitter API
may not provide exactly what you request). The final dataset that has been explored consists of
about 6 million records. This dataset could be extended further using the technique provided
by UoA described in [VG12]. They tackle the problem of extracting location information,
usually referred to as geocoding, from additional user-provided content.They rely on software
and data which are available online and publicly accessible.

The aim of the investigation at-hand13 is to check whether disasters can be detected from
the Twitter data. In particular, we investigate how a known disaster, namely, the floods of
June 2013, is reflected in the Twitter data.

We conduct the analysis in two experiments: (1) we attempt to detect flooding disasters
based on the number of tweets in a place (2) we explore selected Twitter messages containing
relevant terms.

5.6.1 Experiment 1: Attempt to Detect Disasters based on the Number of Tweets
in a Place

In the first experiment we apply following hypothesis: A disaster event, such as flood, causes
increase in the overall number of tweets posted in the place where the disaster happens. This
can be used for detecting places of disasters.

Data preparation
The territory of Germany has been divided into compartments (Voronoi polygons [Vor08],
compare Section 2.3). For this purpose, a random 2% sample of the tweets has been taken
from the database. The points have been grouped into convex spatial clusters, and the centres
of the clusters have been taken as generating seeds for the Voronoi tessellation. The resulting
division is shown in Figure 36.

13
Section provided by Fraunhofer IAIS
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The entire dataset has been aggregated by the spatial compartments and daily time
intervals: for each compartment and day, the number of tweets has been counted. The result
is a set of time series of tweet counts, each time series of the length 244 days is associated
with a certain cell (compartment) of the territory division. The time series are visually
represented in a time graph (line chart) in Figure 37.

Exploration of the spatial time series
The most prominent peaks (i.e., sharp increases in the number of tweets) can be easily detected
by viewing the time graph. To interpret the meaning of the peaks, we have extracted the most
frequent words and combinations from the tweets posted in the respective cells and time
intervals, setting the minimal frequency threshold to 5. The results showed us that these
peaks do not correspond to disaster events (fortunately). Thus, the highest peak, up to 2402
messages per day, occurred in Berlin from 6 to 8 May 2013. Figure 38 shows the most frequent
words and combinations occurring in the messages posted in Berlin in this time interval. The
frequency champion is “re publica”, which occurred 511 times on May 6, 475 times on May 7,
and 394 times on May 8. Using Google, we have found out that “re:publica” was a European
conference on social media, blogs, and digital society that took place in Berlin in this time
period. The next highest peak (1046 tweets) happened in Bochum on 24 November 2012
(and 651 tweets were posted in this place on the next day). Among the most frequent words,
there is “Ruhrcongress Bochum” (which is a congress centre in Bochum). From the web, we
have learnt that on November 24-25, 2012 there was a meeting of the German party Piraten
(Piraten-Parteitag) in the congress centre in Bochum. The word “#piraten” occurs among
the frequent words with the frequencies 32 on November 24 and 19 on November 25. Among
the frequent words, there is also “Bermudadreieck” (Bermuda Triangle) with frequency 21,
which is “the designation for an area with a high density of bars and restaurants” (Wikipedia).
The third highest peak occurred in Hamburg on December 27-29, 2012. It was caused by the
Chaos Communication Congress organized by the Chaos Computer Club the largest European
organization of hackers.

To find out whether there are any peaks that can be attributed to the flood events of June
2013, we have specifically looked at the parts of the time series for the time period 25 May
01 July 2013 (Figure 39). It can be observed that there are no prominent peaks in this period.
Knowing that the area of Dresden was a↵ected by the flood on the Elbe River, we specially
looked at the time series of the cells covering Dresden centre and suburbs. The time series
do not show any peaks. We have noticed a small local maximum in the number of tweets
in the centre of Dresden on June 3 (72 tweets compared to 32, 48, and 61 in the previous
days and 57 in the next day) and looked at the most frequent words and combinations for
this place and day (Figure 40). The flood-relevant word “#hochwasser” occurs among these
words (it is marked with a black frame in Figure 40), but the frequency is only 9 while the
highest frequencies are 61 for “#linkebpt” and 41 for “Dresden”. Also frequent are the word
“Neustadt” (20) and the phrase “Bunte Republik Neustadt” (19), which refer to one of the
districts in Dresden.

We have also tried to find potentially interesting events by comparing the values in the
time series with the mean values for the previous 14 days (Figure 41). The time graph of
the di↵erences shows very many peaks. For the time period 25 May 1 July 2013, have
extracted the frequent words and combinations for the cells and days where the di↵erences
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to the 14-days means were 100 or more. There are 138 such pairs (cell, day). The re-
spective sets of frequent words and combinations do not contain the term “Hochwasser” at all.

Conclusion
Our hypothesis was that a disaster event may cause a noticeable increase in the number of
tweets posted in a disaster-a↵ected area. Based on our experiment, we have to reject this
hypothesis. We have seen that high increases in the numbers of tweets are mostly caused by
public gatherings, such as conferences, but not by disaster events. (Moreover, the gatherings
generating high peaks consist of quite specific public: people interested in social media, com-
puted hackers, “pirates”, etc.) We have also seen that the sets of tweets posted in places that
are known to be disaster-a↵ected may contain too few occurrences of relevant terms; hence,
relevant messages can be easily lost in the bulk of posted tweets. This means that, in order
to detect possible disasters, it is necessary to look specifically for tweets containing relevant
terms. For this purpose, a vocabulary of relevant terms and related words needs to be created.
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Figure 36: The Division of the Territory Covered by the Investigated Dataset into Voronoi
Polygons.

Figure 37: A Time Graph Shows the Time Series of the Tweet Counts by the Spatial Com-
partments.
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Figure 38: The Most Frequent Words and Combinations Occurring in the Tweets Posted in
Berlin in May 6-8, 2013. The Font Size is Proportional to the Frequency of a Word/Phrase.

Figure 39: The Time Series Graph has been Zoomed in Time to the Interval 25 May 01
July 2013.

Figure 40: Frequent Words and Combinations in Dresden Centre on June 3, 2013.

D5.1, Version 1.0, 30/08/2013 58 http://www.insight-ict.eu/



INSIGHT FP7-318225

Figure 41: The Time Graph Shows the Di↵erences (Residuals) of the Values to the Mean
Values for the Previous 14 days. The yellow crosses mark the di↵erences of 100 or more.
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5.6.2 Experiment 2: Exploration of Selected Tweets Containing Relevant Terms

In the second experiment we apply following hypothesis. Spatio-temporal clusters of tweets
containing relevant keywords may indicate disaster-a↵ected places. The clusters do not need
to be big (in terms of the number of messages), but several messages co-located in space
and time may deserve a closer look while a single message may be not indicative.

Data preparation
We use a database query to extract from the set of German tweets only the tweets potentially
relevant to flood events. Specifically, we apply a query condition that the message text
must include substring “hoch” and substring “wasser”, assuming that in some messages these
substrings may be separated. This gives us certain amount of “false positives”, such as

• “Gerade ein Foto hochgeladen Wasserschloss Haus Kemnade http://t.co/SFykqLOl“;

• “Hundertwasser Ausstellung (@ Hochzeitshaus) http://t.co/JFKq0mY1”.

However, there are also flood-relevant messages where “hoch” and “wasser” are separated,
for example:

• “Wooow!! Das Wasser vom Rhein ist ziemlich hoch!!”;

• “Für Konstanzer Verhältnisse ist der Wasserpegel auch erstaunlich hoch Hafen Konstanz
http://t.co/OcgkwnCGy0”.

There are also cases where the word “Hochwasser” is misspelled, for example,

• “#AltLostau ist jetzt nur noch mit dem Boot erreichbar - Schuldamm wurde überspült
#Hochhwasser #lostau http://t.co/rfM6ylcBRT”.

In some cases, the string “wasser” is also misspelled as “waser”, but the messages were
retrieved due to other occurrences:

• “In #Lostau steht das Wasser jetzt ca. 1km hinter dem Deich in den Kellern der Häuser
#Hochwaser #Madeburg”.

To include also texts with “wasser” misspelled as “waser”, we
use the query condition instr(lower(MESSAGETEXT),’hoch’)>0 and
(instr(lower(MESSAGETEXT),’wasser’)>0 or instr(lower(MESSAGETEXT),’waser’)>0).
The query retrieves 2443 messages for the whole territory of Germany. After removing the mes-
sages including the substrings “hochgeladen” or “hochzeit” or “wasserkocher”, 2429 messages
remain. The messages span over the time period 25/11/2012 05:40:52 - 25/07/2013 11:45:16.

Exploration of the spatio-temporal distribution of the tweets
A map in Figure 42 shows the spatial distribution of the messages, which are represented by
dot symbols (small circles) in violet. It is possible to notice concentrations of the symbols in
the areas of Dresden, Magdeburg and some others (see Figure 43), which are known to be
a↵ected by the June floods of 2013. However, there is also a concentration in Berlin, which
was not a↵ected. By looking at the messages from Berlin, we see that they mention the flood
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events in other places, actions of politicians, help to flood victims, or tra�c problems caused
by the floods. This shows that concentrations of disaster-related Twitter messages need to be
interpreted with caution: not necessarily an event is where people tweet about it.

In Figure 44, a space-time cube shows the spatio-temporal distribution of the flood-related
tweets. The vertical dimension represents the time, and the tweets are represented by balls
placed in the cube according to their spatial and temporal positions. The time axis is oriented
upwards; hence, the latest tweets are at the bottom and the most recent at the top of the cube.
The cube has been rotated to be viewed from the southwest, i.e., the left side corresponds to
the northwest and the right side to the southeast.

The cube contains a “column” made by vertically aligned balls, which means that all of the
respective messages have the same location in space. The location is Konstanz (at the lake
Bodensee); the messages, which are, most probably, automatically generated, inform about
the water level in the lake, for example:

• “Bodensee-Pegel: 343,6 cm! - http://t.co/JWhYfRSk - Hochwasser-Infos:
http://t.co/dG7uuYK1”.

The highest level among the available messages is 467.5; it was reached on 03 June 2013.
Besides the “column”, it is possible to notice three major “layers”; we have applied di↵erent
colouring for their better visual separation. The dark blue colour is used for the time period of
November-December 2012, light blue for January middle March 2013, yellow for the period
from mid-March to May 23, and red from May 24 till July 25. The periods include 69, 69,
39, and 2252 tweets, respectively (see Figure 45). The time histogram in Figure 46 shows the
temporal distribution of the number of tweets by days. The highest number of tweets (306)
was reached on 03 June 2013.

The three maps in Figure 47 show the spatial distribution of the tweets in the first two
periods and in the last period. In the first period, most of the tweets are aligned along the
valley of the river Rhine. Most of the messages reflect the water rise that happened around
Christmas (December 20-30 of 2012). The messages of the second period (winter 2013) are
more scattered over the territory. The messages of the fourth period (summer 2013) cover
almost the whole territory of Germany.
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Figure 42: The Map Shows the Spatial Distribution of the Tweets Containing Flood-relevant
Substrings.
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Figure 43: An Enlarged Map Fragment Shows an Area A↵ected by the June 2013 floods.
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Figure 44: The Space-Time Cube Shows the Spatio-Temporal Distribution of the Flood-
related Tweets.

Figure 45: A legend explaining the colours in Figures 44, 46, and 47.

Figure 46: The Time Histogram Shows the Distribution of the Flood-related Tweets over
Time.
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Figure 47: The Spatial Distributions of the Flood-related Tweets in 3 Time Periods:
November-December 2012, January-March 2013, and End of May till End of July 2013.
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Spatio-temporal clustering of the flood-related tweets
We apply density-based clustering (using OPTICS [ABKS99]) to the set of the flood-related
tweets. The tweets are clustered according to their positions in space and time, i.e., as spatio-
temporal points, with 30 km as the spatial distance threshold, 1 day (86400 seconds) as
the temporal distance threshold, and 2 as the minimum number of neighbours within these
distance thresholds. We obtain 90 clusters with the sizes from 3 to 783 including in total 1885
points (77.6% of all), and 544 points (22.4%) belong to “noise”.

The map in Figure 48 and the space-time cube in Figure 49 show only the points included
in the clusters, the “noise” is filtered out. Besides the points, the map contains also convex
hulls built around the clusters. The space-time cube shows that only a few small clusters have
been built in the first time period, none in the second and third periods, and very many in the
fourth period. A fragment of a table view on the left of Figure 50 shows information about
the tweets included in the clusters from the time interval 20 December 2012 till 31 May 2013.
It is visible that there were no spatio-temporal clusters (with the given parameters) between
07 January and 20 May 2013.

A fragment of a table view on the right of Figure 50 shows summarized information about
the clusters: number of objects (tweets), start and end times, duration (in days), and spatial
extent (in metres). The largest cluster covering the area of Saxony (containing Dresden and
Magdeburg) began on 01 June and ended on 17 June 2013; it includes 783 tweets and its
spatial extent (bounding rectangle diagonal) is 268 km.

The spatial and temporal extents and internal structures of the clusters in the pe-
riod starting 20 May till 30 June 2013 can be seen in space-time cubes in Figures 51
and 52. In Figure 52, the points making the clusters are shown together with the con-
vex hulls of the clusters. The heights of the convex hulls represent the durations of the clusters.
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Figure 48: The Spatio-Temporal Clusters of the Flood-related Tweets are Shown on a map.
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Figure 49: The Space-Time Cube Shows the Spatio-Temporal Clusters of the Flood-related
Tweets.

Figure 50: Fragments of two Table Views show Detailed (left) and Summarized (right) In-
formation about the Spatio-Temporal Clusters.
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Figure 51: The Space-Time Cube shows the Spatio-Temporal Clusters of Tweets from the
Time Interval 20 May till 30 June 2013.
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Figure 52: The Spatio-Temporal Clusters of Tweets from the Time Interval 20 May till 30
June 2013 are shown Together with their Convex Hulls.
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Matching detected clusters to other sources of information
As the “ground truth” for checking the validity of our clusters, we use other information
sources that can be found in the Web using Google. The first detected cluster in the period
end May till June 2013 is in town Oberweiler-Tiefenbach (northwest of Kaiserslautern) in the
valley of a small river Lauter. The cluster consists of 5 messages posted on 20 May between
15:53 and 18:31; i.e., it has quite short duration. We could not find information about this
flood in other sources. The next cluster (3 messages) is in Hildesheim near Hannover starting
on 26 May at 20:10 and ending on 27 May at 6:38. Information in other sources:

• YouTube contains 4 videos dating from 26, 27, and 28 May

• A photo from 28 May at http://fotojournalismus.tumblr.com/post/51568293826/flooded-
fields-near-hildesheim-germany-on-may-28 and http://blogs.ft.com/photo-
diary/tag/hildesheim/

• News articles from 30 May at http://www.thelocal.de/national/20130530-50013.html
and 31 May at http://floodlist.com/europe/germany-may-2013.

Another cluster located close to Hildesheim (in Sarstedt) occurred on 31 May 04:21-05:39.
The news articles from 30 and 31 May report about floods not only in Hildesheim but also
in other places in Lower Saxonia, in particular, Braunschweig. We have detected a cluster at
Braunschweig from 30 May 17:15 to 31 May 15:18. Other clusters in this region are 27-28
May at Höxter, 03-04 June at Minden, 02-03 June and 04 June near Hannover (2 clusters),
and 11-12 June again near Hannover. The news article from 31 May mentions also floods in
Bavaria, in particular, in Bamberg. We did not obtain any cluster near Bamberg and have no
clusters in Bavaria beginning earlier than 1 June.

On 1 June, 9 di↵erent spatio-temporal clusters began in di↵erent regions of Germany:
on rivers Main, Rhine, and Neckar on the west of the country, in Bavaria on river Danube
(Passau and Regensburg) and in Saxony on rivers Spree, Elbe, Saale, and Mulde.

Other information:

• News articles from 1 June http://www.dw.de/floods-ravage-south-and-east-
germany/av-16853686 and http://bigstory.ap.org/article/germany-braces-more-
flooding-after-heavy-rains report rising of water levels on Rhine, Danube, and Neckar
and mention cities Passau and Gera, for which we have clusters beginning on 1 June.

• News articles from 1 and 2 June also write about the flood in Passau on 1 June.

• YouTube video from 2 June shows flood on Neckar.

The discovered clusters also correspond to the Wikipedia article
http://en.wikipedia.org/wiki/2013 European floods.

Conclusion
Spatio-temporal clustering of pre-filtered disaster-related tweets may allow detection of loca-
tions and times of disaster events. However, it should be borne in mind that
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• it is not guaranteed that any event is always represented by a tweet cluster;

• some tweet clusters occur in places and times where no disaster events happen since
tweets may refer to events occurring elsewhere; hence, it is necessary to check the
content of the messages in each cluster;

• some tweet clusters may refer not to disaster events themselves but to consequences of
disaster events, such as tra�c problems; this also shows a need of checking the tweet
content.

5.6.3 Summary

In result of previous analysis, we conclude following points:

• To detect disasters and other “problematic” events from the stream of tweets, it is
reasonable to filter the set of incoming messages based on a predefined vocabulary of
relevant terms.

• It is reasonable to combine the tweets with geo- and time-referenced items from other
sources (YouTube, Flickr, ...), which can be filtered based on their titles and/or tags.

• Events may be detected by spatio-temporal clustering of pre-filtered objects (tweets
and, possibly, posts from other media). For this purpose, a clustering algorithm working
in real time within a distributed computing architecture needs to be developed. The
algorithm must be able to attach new incoming objects to appropriate existing clusters
and store the history of detected clusters, i.e., how they evolve over time: move in space,
expand or shrink, become denser or sparser, or keep stable.

• For each new cluster, an analyst needs to check (a) if it really refers to an event occurring
in the same place and time as the cluster or to an event occurring elsewhere; (b) if it
refers to locally experienced consequences of an event that occurred elsewhere.

• Besides specifically looking for predefined types of events using vocabulary-based filter-
ing, it may be reasonable also to pay attention to unusual concentrations of tweets in
space and time. This can be done by aggregating all tweets by suitable spatial compart-
ments and time intervals into place-related time series. For each place, the current level
of Twitter activities computed in real time needs to be compared with the usual level
for the respective day of the week and time of the day derived from the historical data.
For detected significant deviations from the usual levels, the most frequent key words
and phrases may be analysed to interpret what is going on.

5.7 Geospatial Emotion Analysis for Event Detection

Fraunhofer explored the emotions expressed in Tweets in Germany during the period of
the floods (June 1 - 23). The Tweets were annotated using the method described in
[VG13, VGBK13b] provided by UoA. This method applies i) emotion extraction techniques on
microblogs, and ii) location extraction techniques on user profiles. Combining these two, highly
unstructured content is converted to thematically enriched, locational information, which is

D5.1, Version 1.0, 30/08/2013 72 http://www.insight-ict.eu/



INSIGHT FP7-318225

presented to the user through a unified front-end. Tweets were annotated using the following
emotions: anger, disgust, fear, joy, sadness, surprise. As a first step we have explored the
emotion of anger for the areas with 50km radius. The resulting time series seem to have quite
interesting profiles that can be related to the flooding event. We have mean-normalized each
time series (for discarding di↵erences in magnitude) and smoothed them over 5 days period.
The derived time series have been clustered with kMeans with di↵erent K. Quite interesting
results appear with k=5. In Figure 53 we can observe the results of clustering. Areas with the
same color belong to the same cluster. Cluster 1 (red) (see Figure 54) starts with rather high
counts of anger messages, but the counts monotonously decrease. This is an interesting result
since these areas include flooded cities such as Dresden, Magdeburg, Ulm and Karlsruhe.

Figure 53: Results of emotion time series clustering.
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Figure 54: Emotion time series of Cluster 1 (red).

5.8 Event Detection in Mobile Phone Usage Data

The mobile phone network is a sensor network for mobility and activity information with an
nearly complete coverage of Germany. We have access to network usage metrics of cells for
a time period of more than 2 years. A more detailed description of this metric is provided
in Section 4.1.6. In general this metrics holds information on the tra�c load at a cell tower
during a specific time interval. Additionally, we know the location and the coverage area for
each of more than 50.000 mobile phone towers.

We are interested in discovering anomalies, identifying (relevant) events and re-constructing
situations. From the overall process perspective, one important responsibility of the ISA
analyzing the mobile phone data is to detect and report interesting sensor readings to the
round-table.

This leaves the non trivial task of defining the term interesting reading to the sensor
processor. As a starting point, we assume that each cell tower has some kind of normal load.
Any deviation from this expected load classifies for an interesting reading. To model this state
of normality we initially choose a simple model, which we can use to refer to when applying
more sophisticated methods later on. We model the load of a cell at a given time as a Gaussian
process. For this we assume that each cell has an expected load value at a given time and all
aberrations from this value are only caused by white random noise.

Initially, we aggregate incoming sensor readings per hour of day, that is, we get a load
value for every hour and for each of the 50.000 cells, for instance on Fridays at 10 o’clock and
CellID = XE3452G. As a preliminary approach, we model each of phone cell’s time series
as result of a Gaussian process with N (µ, �). To account for the circadian and weekly cycles
of human activities, each cell’s model comprises of 24 hours ⇥ 7 weekdays = 168 individual
distributions N

i

. For the sake of confirmation of suspected events (based on the Twitter
stream), we assume each cell exhibits its normal behavior during time intervals not belonging
to any such detected event, which are thus used as input to the model.

Initial Experiment

To gain some practical insights, we made an initial experiment. We chose a cell near the
,,Rhein Energie Stadion” (a soccer arena in Cologne) and calculated the values for day hours
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and weekdays, as described above. For this experiment we choose a simple rule based approach:
a value outside the 98% confidence interval is marked unusual. If it remains o↵ this confidence
corridor for at least two hours we consider it to be an anomaly.

Applying this to a cell of interest, we find an anomaly at 22th of December, c.f. Figure 55.
If we now reconsider the round-table this anomaly would be reported and discussed. After
involving a human expert we find that the first peak of the signal corresponds to the first
halftime and the second peak to the second half time of a soccer game.

Figure 55: Anomaly detected in phone data at the time of soccer game. The green line is
the average calculated from past sensor readings, the grey shade covers the confidence corri-
dor and the red line is the actual reading.

Another interesting finding is the anomaly detected on 16th July, see Figure 56. This
anomaly aligns with a rock concert that took place at the stadium. It shows that di↵erent
types of anomalies can be identified applying this straight forward approach. Such events like
a soccer game are, of course, highly expectable at this venue and also a concert, although it
might be less expected.

This experiment shows that if we can find an anomaly we can report on the location and
time quite accurately using the mobile network infrastructure. Naturally, we need additional
sources of information in order to add semantics of the finding, i.e. which type of event we
look at. At this stage of the project we directly involved a human expert but in the course of
the project this will be automatized. We looked up an event database to identify and label
both events. Concerning the INSIGHT system this aligns well with the proposed approach of
the round-table, as any Intelligent Sensor Agent is expected to report it’s findings to ISA and
a moderator in order to verify, enrich and label events.

The experiment clearly shows that not all known events, i.e. soccer games, can be detected
using the basic approach described. Noticing false-positives is not very surprising as the
game schedule strongly influences the mean (expected normal value) as well as the variance.
Therefore, the sensor readings at regular games naturally fall into the chosen confidence
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Figure 56: Anomaly in Erlang data, detected during a rock concert.

intervals. This also violates the assumption that the expected normal behavior of a cell follows
a normal distribution. Reason for this violation is the weekly scheduled soccer games.

In addition to these false-negatives, we detected a couple of false-positive classifications as
well. For instance an anomaly is detected for Friday, the 10th of November, starting around
midnight and ending at around 6 o’clock in the morning (see Figure 57). The combination of
the weekday and the time slot does not seem to be a reasonable argument for a true event.
Also a web search did not uncover any hints for a sport or other event taking place in the area
served by the cell. For that reasons it is very likely that this is a false finding here.

Deriving from the most obvious limitation, we currently work on methods to detect repet-
itive formations in the signal. Fourier transformations or the related wavelet transformation
seem to be a good starting point here. It clearly can be stated, that we will not have a fully
labeled data set in the application scenarios. There is an immanent need for a more capable
model of events.

Currently, we are exploring ways to make use of the fact, that there is a regular structure
behind the timing of many large events. One approach we are evaluating, is to decompose the
signal into components that can be better “understood”. This follows works previously applied
to climate data set, more precisely on the analysis of CO2 concentration in the atmosphere.
The authors of [CCMT90] propose a decomposition into three parts, a (long term) trend, a
repeating component (seasonal) and the remainder of the signal that is not ’explained’ by one
of the other two parts. This approach looks promising, for instance it would be very useful
to separate the influence of a holiday break from the rest of the signal. Also it would be
useful, to detect and remove a probably continuously ascending trend in the data, caused by
the increasing usage of mobile phones over the years.
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Figure 57: False finding of an anomaly.

Tracing the flood in Germany

In Mai and June 2013 a massive flood disaster hit Germany. Based on the assumption that
disruptive events like flood also cause a detectable change in mobile phone utilization patterns,
we wanted to test if we can detect spatio-temporal clusters of interest. In particular, we try
to detect deviations from the representative daily time series of Erlang values during an event.
We apply the same event detection method as describe above.

To identify the cells with significant deviations we compare the actual Erlang values with
the model-predicted mean values µ. If the di↵erence exceeds 2� we flag the cell and time slot
as an anomaly. Due to their small spatial extent flagged cells may provide more fine-grained
indication of potential event locations. Figure 58 shows hotspots of significant deviations
along the Elbe river, corresponding to the time interval of the rather large purple cluster in
Figures 48 and 49. Areas and times correspond to major events and a↵ected areas of the flood
disaster.

It should be noted that this straight-forward approach is intended as a proof-of-concept.
We were able to identify events that specifically relate to the flood situation. In combination
with the analysis of Twitter messages in Section 5.6 both data source validate and extend
each other.

Conclusion

Our results have shown that a disaster causes anomalies in the load distribution of a cell tower
as well as an entire mobile sensor network. Those anomalies can be detected and linked to a
specific area or region. We have seen that mass events (e.g. soccer game) can be identified as
well as more specific and widespread events during a flood situation. Based on our experiments
we could establish a connection to findings by the Twitter data analysis. This supports our
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Figure 58: A↵ected cell towers that show anomalies.

round-table approach. Di↵erent data sources (various distributed sensors) do provide unique
insights on an event. We will continue investigating the data collected for the flood situation to
see the extent to which events are detectable. Furthermore, we will investigate the possibility
to derive patterns or fingerprints for certain events or types of events from the data. This
helps to automatically provide a label for known event.

5.9 Event Recognition Experiments

We describe our first event recognition experiments on the bus and SCATS datasets that are
available from dublinked.ie. Section 5.9.1 presents the event processing engine. Section
5.9.2 shows a number of event patterns for intelligent transport and tra�c management.
Finally, Section 5.9.3 presents our preliminary experimental results.

5.9.1 A Logic-based Event Model

We present a logic-based event processing model based on the Event Calculus for Run-Time
reasoning (RTEC) [ASP12]. The Event Calculus, introduced in [KS86], is a logic programming
formalism for reasoning about events and their e↵ects. Based on [ASP12], we summarise the
essentials of the model. We adopt the common logic programming convention that variables
start with upper-case letters (and are universally quantified, unless otherwise indicated), while
predicates and constants start with lower-case letters. Our approach relies on logic program-
ming due to the formal, declarative semantics and the rich expressiveness it o↵ers. RTEC
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Table 3: RTEC Predicates.

Predicate Meaning

happensAt(E, T ) Event E occurs at time T

holdsAt(F =V, T ) The value of fluent F is V at time T

holdsFor(F =V, I) I is the list of the maximal intervals
for which F =V holds continuously

initiatedAt(F =V, T ) At time T a period of time
for which F =V is initiated

terminatedAt(F =V, T ) At time T a period of time
for which F =V is terminated

union all(L, I ) I is the list of maximal intervals
produced by the union of the lists
of maximal intervals of list L

intersect all(L, I ) I is the list of maximal intervals
produced by the intersection of the
lists of maximal intervals of list L

relative complement all(I 0,L, I ) I is the list of maximal intervals
produced by the relative complement
of the list of maximal intervals I 0 wrt
every list of maximal intervals of list L

supports e�cient reasoning (as is evident in the empirical evaluation), and thus serves us well
in illustrating the approach feasibility.

Event Representation Systems for event recognition (event pattern matching [Luc02])
accept as input a stream of time-stamped simple, derived events (SDE). An SDE (or low-level
event) is the result of applying a computational derivation process to some other event, such
as an event coming from a sensor [LS08]. Events that arrive at the system are not the raw
events emitted by sensors. Such raw events are enriched, filtered, and aggregated by multiple
mediators, whose internal functionalities may not be known to the event recognition system.
Using SDE as input, event recognition systems identify composite events (CE) of interest —
collections of events that satisfy some pattern. The specification of a CE (or high-level event)
imposes temporal and, possibly, atemporal constraints on its deriving events, either SDEs or
other CEs.

In the RTEC model, types of events are represented as n-ary predicates
event(Attribute1,. . . ,AttributeN), such that the parameters define the attribute values of an
event instance event(value1,. . . ,valueN). An example from the Dublin tra�c management sce-
nario is the type of SDE emitted by SCATS sensors, tra�c(StreetSegId, Flow, Count), which
refers to the measured tra�c flow and aggregate number of vehicles passing some sensor
(identified by the attribute StreetSegId). Thus, a specific event instance is an instantiation of
this predicate with constant values, e.g., tra�c(s187, 4.51, 117).

Time is assumed to be linear and discrete, represented by integer time-points. The occur-
rence of an event E at time T is modelled by the two-ary predicate happensAt(E, T ). To reason
about the e↵ects of events, we rely on the notion of a fluent F , a property that is allowed to
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have di↵erent values at di↵erent points in time. Here, the term F =V denotes that fluent F
has value V . Informally, holdsAt(F =V, T ) represents that fluent F has value V at a particular
time-point T . Interval-based semantics are obtained with the predicate holdsFor(F =V, I),
where I is a list of maximal intervals for which fluent F has value V continuously. holdsAt

and holdsFor are defined in such a way that, for any fluent F , holdsAt(F =V, T ) if and only
if time-point T belongs to one of the maximal intervals of I for which holdsFor(F =V, I).
Table 3 presents the main RTEC predicates.

Fluents are of two kinds: simple and statically determined. For a simple fluent F , F =V
holds at a particular time-point T if F =V has been initiated by an event at some time-point
earlier than T (using predicate initiatedAt), and has not been terminated in the meantime
(using predicate terminatedAt). This is an implementation of the law of inertia. Statically
determined fluents are defined by means of interval manipulation constructs, such as union all,
intersect all and relative complement all (see Table 3).

In our model, the input SDE streams are represented by logical facts that define event
instances (predicate happensAt) or the values of fluents (predicates holdsAt and holdsFor).
Taking up the example of the SCATS sensor given earlier, facts of the following structure
model the input stream:

happensAt(tra�c(StreetSegId ,Flow ,Count), T )

CEs, in turn, are modelled as logical rules defined over event instances (happensAt), the
e↵ects of events (initiatedAt and terminatedAt), or the values of the fluents (holdsAt and
holdsFor), and implement the respective temporal and atemporal constraints. For illustration,
consider a CE that captures whether tra�c flow as given by tra�c SDE is decreasing. We
may capture the CE as a simple fluent flowTrend that assumes the value decreasing if in two
consecutive SDEs (the second one occurring six minutes, that is, 360⇥106 milliseconds, after
the first one) there is a drop of more than 10% in the flow value:

initiatedAt(flowTrend(S )= decreasing , T ) 
happensAt(tra�c(S ,Flow , ), T ),
happensAt(tra�c(S ,Flow 0, ), T+360⇥10 6

),
Flow 0 < V�Flow⇥0 .1

(2)

‘ ’ denotes a ‘free’ variable that is not bound in a rule.

Run-Time Composite Event Recognition Based on the introduced model, run-time CE
recognition is performed as follows. The RTEC engine queries, computes and stores the
maximal intervals of fluents and the time-points in which events occur. CE recognition takes
place at specified query times Q1, Q2, . . . . At each query time Q

i

only the SDEs that fall within
a specified interval — the ‘working memory’ (WM) or ‘window’ — are taken into consideration:
all SDEs that took place before or on Q

i

�WM are discarded. This constraint ensures that the
cost of CE recognition depends only on the size of WM and not on the complete SDE history.
The size of WM, as well as the temporal distance between two consecutive query times — the
‘step’ (Q

i

�Q
i�1) — are tuning parameters that can be either chosen by the user or optimized

for performance.
The relationships between WM and Q

i

�Q
i�1 can be divided into three cases, as follows.
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• WM < Q
i

�Q
i�1, that is, WM is smaller than the step. In this case, the e↵ects of the

SDE that took place in (Q
i�1, Qi

�WM] will be lost.

• WM = Q
i

�Q
i�1. In this case, no information will be lost, provided that all SDEs arrive

at the engine in a timely manner. If SDEs do not arrive in a timely manner, then the
e↵ects of SDEs that took place before Q

i

but arrived after Q
i

will be lost.

• WM > Q
i

�Q
i�1. In the common case that SDEs arrive at the engine with delays, it is

preferable to make WM longer than the step. This way, it becomes possible to compute,
at Q

i

, the e↵ects of SDE that took place in (Q
i

�WM, Q
i�1], but arrived after Q

i�1.

Further details on RTEC may be found in [ASP12].

5.9.2 Composite Event Recognition

We present a set of preliminary CE definitions for transport and tra�c management. To
perform CE recognition with RTEC, each record of the bus dataset was converted to the
following facts:

happensAt(move(bus , line, operator , delay), t)
holdsAt(gps(bus , lon, lat , direction, congestion) = true, t)

move(bus , line, operator , delay) expresses that bus is running in line with a delay at t, and
is owned by operator . delay is a possibly negative integer measured in seconds. t is in micro-
seconds. gps(bus , lon, lat , direction, congestion) = true additionally states the longitude and
latitude of bus , as well as its direction (0 or 1) on the line. Furthermore, the gps fluent provides
information about congestion (0 or 1) in the given longitude and latitude. Given this input,
we developed CE definitions concerning, among others, bus, line and operator punctuality.

A bus is said to be non-punctual if it has a positive delay value attached. The durative
bpunctuality CE — denoting ‘bus punctuality’ — is represented as a simple fluent and defined
in RTEC as follows:

initiatedAt(bpunctuality(Bus)= non punctual , T ) 
happensAt(move(Bus , , ,Delay), T ),
Delay > 0

(3)

terminatedAt(bpunctuality(Bus)= non punctual , T ) 
happensAt(move(Bus , , ,Delay), T ),
Delay  0

(4)

A bus starts being non-punctual when a move SDE with a positive Delay arrives. Furthermore,
a bus stops being non-punctual upon the arrival of a move SDE with a non-positive Delay .
The maximal intervals during which a bus is continuously (non-)punctual are computed from
rules (3) and (4) by the RTEC built-in holdsFor predicate.

In addition to bus punctuality, we may detect ‘line punctuality’ — this CE may be defined
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as follows:

initiatedAt(lpunctuality(Line)= non punctual , T ) 
happensAt(end(bpunctuality(Bus)= punctual), T ),
holdsAt(bus info(Bus)=(Line, ), T ),
[there are at least n non-punctual buses running in Line]

(5)

terminatedAt(lpunctuality(Line)= non punctual , T ) 
happensAt(end(bpunctuality(Bus)= non punctual), T ),
holdsAt(bus info(Bus)=(Line, ), T ),
[there are at most n�1 non-punctual buses running in Line]

(6)

end(F =V ) is a RTEC built-in event that is said to take place at the last time-
points of the maximal intervals for which F =V holds continuously. For example,
end(bpunctuality(Bus)= punctual) takes place when Bus stops being punctual .
bus info(Bus)=(Line,Operator) is a simple fluent expressing that Bus is currently run-
ning in Line and operated by Operator . Note that a bus is not restricted to a single line
and operator. According to rule (5), Line starts being non-punctual when a bus running in
Line ends being punctual (see the first two conditions of rule (5)), and there are at least
n non-punctual buses running in Line (to simplify the presentation, we do not display this
constraint in the RTEC syntax). According to rule (6), Line stops being non-punctual when
a bus running in Line ends being non-punctual (see the first two conditions of this rule), and
there are at most n�1 non-punctual buses running in Line.

Buses provide information about congestions. Consequently, we may compute the maximal
intervals for which a congestion is reported at some location:

initiatedAt(reportedCongestion(Lon,Lat)= true, T ) 
happensAt(move(Bus , , , ), T ),
holdsAt(gps(Bus ,LonB ,LatB , , 1 ), T ),
close(LonB ,LatB ,Lon,Lat)

(7)

terminatedAt(reportedCongestion(Lon,Lat)= true, T ) 
happensAt(move(Bus , , , ), T ),
holdsAt(gps(Bus ,LonB ,LatB , , 0 ), T ),
close(LonB ,LatB ,Lon,Lat)

(8)

(Lon,Lat) are the coordinates of some area of interest, while (LonB ,LatB) are the current
coordinates of a Bus . The gps fluent, like the move event, is given by the dataset. close is an
atemporal predicate computing the distance between two points and comparing them against
a threshold (0 .0003 in these experiments). reportedCongestion(Lon,Lat) starts being true

when a bus moves close to the location (Lon,Lat) for which we are interested in detecting
congestions, and (the bus) reports a congestion (represented by 1 in the gps fluent). Moreover,
reportedCongestion(Lon,Lat) stops being true when a (possibly di↵erent) bus moves close
to the location of interest and reports no congestion (represented by 0 in gps).

Combining SDE from both buses and SCATS sensors allows us increase our confidence
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Figure 59: Average and worst CE recognition times on the bus and SCATS datasets: 943
buses, 83 lines, 8 operators and 966 SCATS sensors. Step set to 10 min = 13748 SDE.

that a congestion has actually taken place — consider the formalisation below:

holdsFor(congestionEvidence(LonS ,LatS )= true, I ) 
holdsFor(reportedCongestion(LonS ,LatS )= true, I1 ),
holdsFor(flow( ,LonS ,LatS )= low , I2 ),
intersect all([I1, I2], I)

(9)

flow(S ,LonS ,LatS ) expresses the value of value (low, high, etc) of tra�c flow at the location
(LonS ,LatS ) of SCATS sensor S. Whether the tra�c flow is low/high/etc at some SCATS
sensor depends on the type of the road in which the sensor is installed — for brevity, we omit
the definition of flow . According to rule (9), congestionEvidence(LonS ,LatS ) is recognised
when one or more buses and SCATS S sensor provide ‘consistent’ information, that is, the
buses report a congestion close to the location (LonS ,LatS ) of S, while S reports low tra�c
flow.

5.9.3 Experimental Results

We present initial experimental results concerning the bus and SCATS datasets. The presented
experiments were performed on a computer with Intel i7 950@3.07GHz processors and 12GiB
RAM, running Ubuntu Linux 12.04 and YAP Prolog 6.2.0. The bus dataset includes all Dublin
buses (943), lines (83) and bus operators (8), while the SCATS dataset includes all Dublin
SCATS sensors (966). Figure 59 presents the average and worst CE recognition times in CPU
milliseconds (ms) for three working memory (WM) sizes: 10 min including on average 13748
SDE, 20 min including 27495 SDE and 30 min including 41437 SDE. The step is set to 10
min. At each query time, RTEC computes and stores that maximal intervals of around 45000
CE. CE recognition was performed on a single processor.

Figure 59 shows that RTEC is capable of supporting real-time CE recognition in this
dataset. Moreover, we could have achieved a performance gain by running RTEC in parallel

D5.1, Version 1.0, 30/08/2013 83 http://www.insight-ict.eu/



INSIGHT FP7-318225

on di↵erent processors.

5.10 Analysis of Tra�c Data

In this section we14 focus on the detection of abnormalities (i.e. not expected values) in tra�c
flow data obtained by SCATS and correlations with the collected Live Drive radio tweets. In
this section we will adress the following:

• How to identify abnormalities.

• How to correlate abnormalities with the tweets.

5.10.1 Locations of SCATS sensors and Tweets

In total 737 tweets were found in Dublin City related with tra�c congestion obtained from
Live Drive, from February till April 2012. We present the sensors and the tweets locations, in
Figure 60. The majority of tweets are outside the central City. At each location more than one
sensor and tweet may be obtained. It is also possible to have more than one tweet referring
to the same event, as their time distance could be less than half an hour and they could be
placed at the same GPS location.

Figure 60: Locations of SCATS sensors (blue) and tweets collected from Live Drive (red) in
the central area of Dublin city, from February till April 2012.

5.10.2 What is an Abnormality

Using the aggregated tra�c flow value TF
i,d,h

of each sensor i, at a particular day of week d
and at di↵erent hours of the day h we calculated the mean µ

i,d,h

and the standard deviation

14
Section provided by UoA
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�
i,d,h

respectively. We defined the abnormalities as the points whose distance from the mean
is greater than a scaling of standard deviation:

TF
i,d,h

� µ
i,d,h

± scale ⇤ �
i,d,h

(10)

Figure 61 presents the distribution of tra�c flow values for a specific sensor at di↵erent
days and hours, it also shows the calculated mean value and scaling of standard deviation for
this sensor in the relevant days and hours. Our method alerts as abnormal all the points that
exceed the boundaries created from the scaling of standard deviation.

Figure 61: Tra�c Flow distribution (blue), the mean value (red) and a scaling of STDV
(green), for a particular sensor at di↵erent days and hours.

We observed that for several sensors tra�c flow values were very noisy, this is why we
apply Moving Average in order to make them smoother. Figure 62 presents the time series
of tra�c flow for a particular sensor at a particular time period before and after applying
Moving Average. Also Figure 63 shows the number of abnormalities found from a total set of
5.075.776 values. We calculated the abnormalities for di↵erent scaling values (2, 2.5, 3 and
3.5) and Moving Average windows (0, 1, 3 and 6). Window is set to be the past and forward
values used in order to calculate the average).

5.10.3 Detecting Connections Between Interesting Tweets and Spatio-temporal
Abnormalities

For the set of abnormalities calculated above we identify correlations with the given tweets.
We assume that a tweet captures an abnormality in tra�c flow if:

1. The spatial distance between the tweet and the abnormality is less than a predefined
value.
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Figure 62: Tra�c flow (blue) and transformed tra�c flow using Moving Average (red) evo-
lution over time.

Figure 63: Number of abnormalities for di↵erent moving average windows and di↵erent scal-
ing values.

2. The temporal distance between the tweet and the abnormality is less than a predefined
value.

In order to see whether the results are reliable we add some artificially generated tweets, at the
same location of the given tweets, but at random time. Then we run the experiments again.
This procedure will help to validate our method’s accuracy and observe whether an abnormality
on tra�c flow values could be explained from a tweet related with tra�c congestion in that
area.

5.10.4 Identifying the Abnormalities with Classification

In order to find possible relationships between tweets and tra�c flow values we currently design
Algorithm 1. This algorithm identifies the sensors that are close to the given tweets (as these
are candidates for tra�c congestion locations). When we run this Algorithm in our dataset
the result is an Array with 6 columns ( t0, t�1, t�2, t�3, t�4, label ) and 2438 rows (438
identified having tra�c congestion and 2000 without tra�c congestion). In general we keep
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tra�c flow values that are in the same time period with Live Drive working hours. The first
step of Algorithm 1 normalizes tra�c flow values for di↵erent sensors (there is high variation
in tra�c flow values for di↵erent sensors). We normalize tra�c flow values according to the
mean and the standard deviation instead of the maximum value (to avoid outliers that would
shrink the normalized values). We did not do the same for the other bound (lower) as there
are not such outliers in the lower bound.

Listing 1 Label tra�c flow values, using the tweets
Data: Tra�c Flow values, Tweets, distance d, time t, number of points to be returned N
Result: Labelled tra�c flow values

1. For each sensor normalize tra�c flow values, using mean and standard deviation, using
the following formula:

TF
i,j

=

TF
i,j

�min(TF
i

)

max(TF
i

)

(11)

, where:
1  i  number of sensors (12)

1  j  number of measurements for sensor i (13)

max(TF
i

) = µ(TF
i

) + 3⇥ �(TF
i

), for each sensor (14)

2. Find the tweets with distance to the sensor less than d.

3. For each tweet find the closest sensor.

4. For each sensor identified above find the measurement that is temporally closest to
the tweet, keep the current and the four previous tra�c flow values and label them as
having tra�c congestion.

5. Select N points and assume that there was not tra�c congestion in that area for that
time period. These N points will be selected randomly, ignoring the points identified
above as having tra�c congestion and the points that are t time away from them.
Then from the identified points keep the 5 previous values and label them as not hav-
ing tra�c congestion.

We used Weka15, machine learning software, for classification. Figure 64 presents the
normalized tra�c flow distribution, as we can see tra�c flow is distributed similarly for both
the points with and without tra�c congestion. At that point we aim to apply several classifiers
(i.e. Naive Bayes and Support Vector Machines) in order to observe if there is an underlying
structure identified from the classifiers that di↵erentiates the two classes (with and without
tra�c congestion).

15
Weka: http://www.cs.waikato.ac.nz/ml/weka/
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Figure 64: Tra�c Flow distribution for each variable

6 Prototype Descriptions

The previous section presented the two use cases of the INSIGHT project and derived tasks
for analyses. First approaches to the analyses were presented as well. Now, we describe two
prototypes for the two use-case scenarios, nation-wide and city level, which will highlight the
integration of the methods developed in this work package (WP5) within the components of
complex event processing (WP3) and uncertainty handling (WP4).

6.1 Estimation of Information on Tra�c Situations in the City of
Dublin, Ireland

The estimation of information on tra�c situations (time series of vehicle quantities per junc-
tion) is required by the city of Dublin in order to avoid tra�c hazards with situation dependent
tra�c control. We focus on this task in our prototype.

The SCATS data set provides the required information for a small sample of junctions. This
poses the task to derive spatio-temporal time series denoting the tra�c situation for unobserved
locations. To achieve reliable information on tra�c situations at unobserved locations, the
crowdsourcing application and uncertainty handling from WP3 is incorporated. Available
trajectory data from buses is incorporated to resolve uncertainties on tra�c situations. The
crowdsourcing application delivers the following knowledge:

• annotation of spatio-temporal events (e.g. labelling an event as a jam),

• spatio-temporal time series of quantities of vehicles,

• trajectories of the users.
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The estimation of the tra�c situation for unobserved locations is a regression task. Our
method bases on the assumption that the quantity of vehicles per junction is generated by
a stochastic process and any finite combination of these numbers is multivariate Gaussian
distributed, thus it is called Gaussian process. The Gaussian process is fully determined by
the pairwise covariances among the quantities per junction and their mean. As the junctions
are connected by streets of the tra�c network and cars have to follow this network, the co-
variance among two junctions can be expressed by the number and length of jointly passing
random walks in the tra�c network. However, this does not reflect the anisotropic behaviour
of mobility which is caused by individual motivation of mobility. Therefore, we weight pre-
ferred combinations (extracted from trajectories) higher and increase correlation among jointly
visited junctions [LXMW12]. The covariances among the tra�c quantities at the junctions
and the measurements at observed junctions are su�cient to compute expectations for un-
observed junctions. Our experiments in [LXM13, LXMW12] show that by incorporation of
mobility patterns for the tra�c quantity estimation the quality of the estimates improves. Ad-
ditionally, the variance of the estimation can be expressed by the covariances. The locations
with highest variance have the most uncertain estimates, crowdsourcing can deliver additional
information (spatio-temporal time series of measurements) for these locations. Information
from the crowdsourcing application on jams at a junction (spatio-temporal events) can be
considered by modification of the tra�c network or incorporation of additional measurements.

Consistency among the incoming spatio-temporal time series on vehicle quantities per loca-
tion (SCATS) and trajectories of the buses (bus data) is checked by complex event processing
methods from WP3. Inconsistencies in the data are resolved by crowdsourcing, WP4.

The architecture of the prototype is as follows, compare Figure 65. Whereas data on
tra�c situations (bus GPS and SCATS measurements) data streams arrive permanently at the
system, the event processing component (subject of WP3) validates these streams and detects
abnormal behaviour. In response, the crowdsourcing component (subject of WP4) is triggered
to get additional detailed information for locations with few or inconsistent knowledge. The
aggregated crowd sourced data (trajectories and quantitative measurements of vehicles) in
conjunction with the SCATS data stream are combined to model the tra�c situation for the
city (including also unobserved locations) using the method presented in Section 5.5, compare
[LXMW12]. The tra�c situations denote the current number of cars for every location in the
city. The architecture is integrated in the real-time thread of the lambda architecture and
follows specifications of WP2.
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Figure 65: Prototype for Tra�c Situation Estimation from Heterogeneous Spatio-Temporal
Time Series and Crowd Sourced Trajectory Information.

6.2 Event Reconstruction in Recent Millennium Flood, Germany

Currently, the BBK manually scans incoming data streams for hazardous events and evaluates
the risk of these events. The automatic event extraction of the INSIGHT system incorporating
spatio-temporal time series (mobile phone usage data and Twitter messages) provides reliable
event data and supports early detection of events.

Our prototype focuses on automatic event reconstruction in the test data sets. Considering
the data on the recent flood in Germany, we focus in the prototype on the identification of
relevant events (e.g. the breech of a dam, the rise of a river tide, or the blockage of a
street) from the incoming data streams. The components of the prototype are illustrated in
Figure 66. The incoming data streams (mobile phone usage data, Twitter messages and crowd
sourced data) are scanned for anomalies using deep learning. This incorporates modeling their
normality. Besides the spatio-temporal data and the distribution of the time series the Twitter
messages contain useful information which we inspect for its contained information (type of
the event addressed, mood of the sender, addressed location). Anomalies detected in one
spatio-temporal data stream trigger the incorporation of other streams in order to evaluate
whether the conditions for raising an event are fulfilled or not. A task for complex event
processing is the derivation of conditions for raising an event from sequences of anomalies and
the extraction of properties of an event (event type, time, location from the data streams) from
the incoming spatio-temporal time series. The resulting events are reported and visualized in
the user interface. The architecture for the real-time processing needs to be scalable, flexible
and distributed, moreover addition of new analysis should be easy, thus we use the lambda
architecture described in Deliverable 2.1.
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Figure 66: Prototype for Reconstruction of Flooding Events from Heterogeneous Spatio-
Temporal Time Series (Mobile Phone Usage Data and Twitter Messages).

7 Summary and Conclusions

The report started with a brief introduction to spatio-temporal data analysis. We have intro-
duced the nation-wide and city level use case scenario.

In the nation-wide use case the automatic detection of flooding events from incoming data
streams is of interest. Besides this event detection step, situation understanding and prediction
of future situations is important. Available data streams for the nation-wide scenario are the
spatio-temporal time series on mobile phone usage and Twitter messages.

In the city level use case tra�c events (jams or blockages) and flooding events should be
detected automatically. For early event detection and decision support prediction of future
situations is important. For the city level use case the following data are available: spatio-
temporal time series on tra�c flow on few junctions (SCATS), weather information, and text
messages (Twitter and Live Drive Radio) as well as trajectories of buses.

These heterogeneous test data sets were described and first analyses have been conducted.
The results obtained so far are promising, and besides validation and improvement of the used
methods, the integration of these analysis building blocks in prototypes is the next step.

Inspection of data quality has shown that further investigations of the data sets, collection
methods and pre-processing have to be done.

Permanent integration of the end-users will reveal more precise requirements, and adoption
to their needs in an agile way is crucial. Therefore, a flexible software architecture needs to be
defined which is a trade-o↵ between tailoring algorithms to end-user’s requirements and using
synergies in data stream analysis among the use cases.

Among the streaming environments presented in D2.1: infosphere streams, storm and the
streams-framework, the streams-framework of TUDo [BB12b] already comprises methods for
data streams [BB12a, Bif13] which can be used for data preprocessing, and anomaly detection
analysis.

The complex event processing has to be performed for fast incoming events from heteroge-
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neous data sources. We tested the streams-framework for its high-throughput complex event
processing capabilities in [GKS+13]. The results are very promising and we are convinced that
the streams-framework which may run stand-alone or on top of storm o↵ers a great framework
for flexible and sustainable software development in INSIGHT.
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