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Executive Summary

The three aspects of the INSIGHT system are: (1) Alarming, Prediction and Alarm Classi-
fication methods - discussed in WP5; (2) INSIGHT System integration and its unit testes -
presented in WP2; (3) end-user assessment of the use cases described in WP6.

The report at-hand presents the progress towards the objectives of Work Package 5 (WP5).
We discuss the evaluation of the Alarming, Prediction and Alarm Classification methods
(mostly reported in WP3) performed on the use scenarios using previously defined test data.
The Deliverable 2.3 contains the discussion of the INSIGHT system integration and unit tests,
whereas the end-user assessment is presented in Deliverable 6.2.

Separate testing of these aspects is important as even with a relatively low accuracy of
some prediction or event detection method the resulting alarms may provide high utility to the
end-user (or vice versa).

Additionally, this deliverable reports how end-users may interact with the algorithms and
how results are visualized in the user interface.
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1 Introduction

This deliverable serves as a final report for the tasks in Work Package 5, “Real-Time Alarm &
Prediction”. We followed a task-based organization of this deliverable in order to demonstrate
the achieved results regarding the WP5 goals. Hence, we present methods to: (1) predict and
categorize situations by analyzing different sources of data and (2) to visualize results to the
end-user. The data is used to train prediction models based on historical information.

The real-time analysis of heterogeneous data streams poses new challenges on existing
methods. Whereas existing preprocessing and analysis methods could use multiple scans, real-
time analysis does not have the possibility to look twice and has to perform its tasks in a
single-scan. Thus, besides off-line learning from batch data, analysis and prediction methods
which are capable of working on data streams are hereby presented. Another critical aspect
of the prediction and anomaly detection is that it is required to be easily interpreted by the
officers/decision makers of an emergency team.
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Figure 1: Deliverable D5.2 in respect to the INSIGHT Architecture as designed in D2.1.

D5.2 & the INSIGHT Architecture Figure 1 indicates the contribution of D5.2 in the
context of the INSIGHT architecture as designed in Deliverable 2.1 (“System Requirements,
Specifications, Standards and Guidelines for Development and Architecture”). As can be seen
in this Figure, the prediction and analysis methods in D5.2 take input either in a streaming
or a batch fashion. Their output is forwarded mainly to the Event Monitoring module which
is implemented by the Round Table component. The main goal of D5.2 is to provide with
methods that analyse the raw or pre-processed spatio-temporal data streams of the use-case
scenarios as described in D5.1, D3.1 and D3.2 and provide evidence that an anomaly or event
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Figure 2: Dependency between D5.2 and other deliverables. Note that we only present rela-
tions with D5.2. There are many dependencies among the rest of the deliverables as well.

(see D5.1) occurred in specific place and time. As seen in the architecture, local analytics
modules comprise the core of the Intelligent Sensor Agents (ISAs). In INSIGHT, multiple ISAs
are maintained, each one implemented in its own lambda architecture (see D2.1). Therefore,
there is a Twitter ISA, a BUS ISA, a SCATS ISA, a Mobile Phone ISA, etc. Please see D5.1
for description of the data sources and data format. The common language between the ISAs
and the Round Table, is specified by a protocol defined in D4.1 and the Ontology of incidents
that is defined in Deliverable D2.2.

Connection of D5.2 with other Deliverables A dependency graph of D5.2 with respect
to other INSIGHT deliverables is depicted in Figure 2. As can be seen in this figure, the
analysis methods are designed based on the requirements and user specifications collected in
D2.1 and D6.1 respectively. Preliminary analysis and data exploration has been conducted in
D5.1. Further methods for analysis of the heterogeneous data streams are conducted in D3.2,
D3.3 and D4.2. The output of these local analysis models output will be fed mainly to the
Round Table (D4.1). The crowdsourcing methods are described in D4.2, and in the report
at-hand we show its user interface. Hence, the evaluation of the analysis methods developed
in INSIGHT is three-fold, while D2.3 verifies that the implementation of the INSIGHT system
is running and well designed, D5.2 verifies the quality of prediction, analysis and visualization
methods for the use cases (reported in D6.1). Their use-case assessment will be reported in
D6.2.

Connection of D5.2 with WP5 tasks

e Task 5.2 - Alarming Given the high volume data streams provided in the city-level and
nation-wide use case scenario, requirements for online alarm detection are derived. Sec-
tion 2 especially, addresses the more complex cases of heterogeneous data. In succeeding
Section 3 models for online alarm detection are trained and applied to detect anomalies
and complex alert events within the disaster management scenarios.

D5.2, Version 1.0, 31/08/2015 8 http://www.insight-ict.eu/
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e Task 5.3 - Prediction/Alarm Classification In this task we developed methods for pre-
diction and categorization of situations by analyzing different sources of data to provide

correct assessment of an emergency situation (Section 3).

e Task 5.4: - Visualization The objective of this task was to provide a visualization of
the outcomes of Alarming (T5.2) and Prediction (T5.3) to the end users. Within a
city /situation map, the events and predictions are displayed to the end users, allowing
for displaying alarms and predictions at different levels of granularity with respect to
time and spatial dimensions (Section 4).

Methods included in Deliverable 5.2 The deliverable at-hand presents the methods in-
cluded in the analysis components of the INSIGHT system and their user interface. An overview
on the methods included in these ISAs are given in Table 1. The table is organized by data

source.
Data Source Intelligent Sensor Agent Methods Section
(ISA)
SCATS Prediction and Route Plan- Gaussian Process Regression, | 3.1
ning Spatio-Temporal-Random-
Fields
SCATS Outlier Detection Statistical Analysis 3.2
BUS Delay Time Prediction Queueing Theory, Random 3.3
Forests
BUS Outlier Detection Complex Rule Based Filtering | 3.4
Mobile Phone Data | Outlier Detection Statistical Analysis 35
Twitter Identifying Traffic Spatial Matching, Wordlists 3.6
Twitter Semantic Outlier Detection Deep Neural Networks 3.7

Table 1: Methods applied in Deliverable D5.2.

D5.2, Version 1.0, 31/08/2015 9
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2 Requirements of Alarming and Prediction Components

The INSIGHT application scenarios demonstrate the benefits of Big Data Analytics for public
safety in the area of civil protection. As a real-world test-bed, we have chosen two comple-
menting and challenging scenarios of high public interest: traffic monitoring in cities, here the
City of Dublin, and monitoring of nation-wide disasters — here: flooding in Germany.

This section is organized as follows. After a review of end-users requirements, we derive
required capabilities of real-time spatio-temporal event detection, and review the methods for
analysis of spatio-temporal data from deliverable D5.1. The section leads over to the next
section that focuses on the prediction and alarm classification task.

2.1 End-Users Requirements to INSIGHTs Alarming Methods

Based on early demonstrators of the INSIGHT system (compare project’'s annual reports) the
end-users identified domain specific potential of the real-time situation awareness provided by
the INSIGHT system and detailed the requirements to the autonomous event identification
system (EIS).

In the following we will review requirements that have been identified together with the
City of Dublin City Council (DCC) and the Federal Office for Civil Protection and Disaster
Assistance in Germany (BBK) [SSBS15, KSM*14]. To ensure interoperability and transfer-
ability we included city-level and nation-wide perspectives. From a professional perspective we
aim at next generation Emergency Information Systems that build on top of Data Systems to
be scalable, flexible, fault tolerant, secure, trustable, collaborative, relevant, and prepared for
automation.

e Scalability has two aspects: One is the range of the EIS scaling from city-level to nation-
wide foci; and the second aspect comes from a system design perspective and means
horizontal scalability which states that the complexity of the underlying big data system is
obscured from the application through a standard system interface. Simultaneously, this
realizes resource-savings and cost-efficiency constraints as it allows to use commodity
server hardware and start with a smaller sized computer cluster (easy extensibility).

e Flexibility refers to the system ability to include and understand new data sources as
they become available and secondly, to incorporate new types of crisis events as they
become known or by requisite of new end-users of the system. The system should be
decoupled from the data producers (e.g. sensors) and independent of the techniques for
data dissemination (e.g. via API, as RSS feed or website).

e Fault tolerance refers to failsafe operations of the system in case of hardware failure and
the unavailability of one or many input data sources due to internal hardware failure or
lost connection to the data provider. The system should continuously monitor its health
and trustworthiness and report to the user. Security of the system addresses compliance
issues such as privacy which should be taken into account from the beginning. Other
security concerns relate to the accessibility of the data by a human operator, data
retention period, and data fusion regulations.

D5.2, Version 1.0, 31/08/2015 10 http://www.insight-ict.eu/
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e Trustable EIS ensure a high degree of certainty in all information provided and visualized
to the end-user. It holds mechanisms to measure the trustworthiness of information,
data sources and derived findings. Transparency of decisions is realized by a tracing
mechanism that logs the event detection process.

e Collaborative features of EIS embrace a participatory approach for the automated
management of resources and to improve emergency detection and validation of detected
events as well as data enhancement in smart cities and countries. An overall goal is
process automation from data collection up to information mapping, prediction and
alarming. This non-exclusively comprise:

— automated detection of relevant events and alarming (awareness)

— automatically crowdsource selected human users for targeted measurements/ feed-
back

— dispatch semi-automatic responses
— provide labels and descriptions of events (including confidence level)

— seamlessly integrate human experts in the decision making process

e Relevance of information becomes a corner stone as more and more data enters the
situation centers. EIS should present information in a transparent and usable way build-
ing their own situation understanding. Preferences of end-users should also be taken
into account.

The increasing importance of crowd-sourcing and social media in reality monitoring and disaster
response as well as the availability of real-world sensors open up new possibilities to advance
emergency information systems and to put new tools in the hands of disaster managers.
In particular, a better societal management of the overall cycle of disaster monitoring and
response becomes possible, citizens may become involved in emergency detection and data
acquisition/validation (crowdsourcing), and advanced planning can economize resources. On
the other hand we see many novel requirements and constraints when putting big data into
operations. Tapping new sources of information will help us to deal with uncertainty in single-
source, real-world data and to raise awareness of unforeseen anomalies for early warning. Event
ontologies structure the detection process and support communications. Big Data Analytics
and machine learning methods reduce manual efforts and efficiently automatize the entire
emergency detection process. What is required is a big data mind-set and new skills at the
information and situation centers to open up for the new possibilities in big data which the
people have already utilized for their life.

D5.2, Version 1.0, 31/08/2015 11 http://www.insight-ict.eu/
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More Information

Q H. Stange, S. Steenhoek, S. Bothe and F. Schnitzler, Insight-driven Crisis Informa-
tion - Preparing for the Unexpected using Big Data, Proceedings of the ISCRAM

2015 Conference

D. Kinane, F. Schnitzler, S. Mannor, T. Liebig, K. Morik, J. Marecek, B. Gorman,

N. Zygouras, Y. Katakis, V. Kalogeraki, and D. Gunopulos, Intelligent Synthesis and

Real-time Response using Massive Streaming of Heterogeneous Data (INSIGHT) and
its anticipated effect on Intelligent Transport Systems (ITS) in Dublin City, Ireland, in
Proceedings of the 10th ITS European Congress, Helsinki, 2014

2.2 Required Capabilities of Real-Time Spatio-Temporal Event De-
tection

The increasing availability of massive heterogeneous streaming data for public organizations,
governments and companies pushes their inclusion in incident recognition systems. Leverag-
ing insights from these data streams offers a more detailed and real-time picture of traffic,
communication, or social networks, to name a few, which still is a key challenge for early
response and disaster management. Detecting events in spatio-temporal data is a widely in-
vestigated research area (see e.g. [Aggl3] for an overview). Depending on the application, the
event detection can analyze single trajectories (e.g. of persons or vehicles), group movements,
spatio-temporal measurements, or heterogeneous data streams. Following examples highlight
capabilities of these approaches:

e Individual Mobility: Within airports (or other security region) it is valuable to monitor
whether individuals enter some restricted area. The analysis of stops or of sudden
decelerations allows detection of unusual behaviour. Sequences of such events can be
matched against predefined mobility patterns [FKMM12], e.g. to identify commuters.

e Group Movement: During public events the early detection of hazardous pedestrian
densities gains much attention. The patterns one could distinguish and detect in group
movement are encounter, flock or leadership pattern [DWL08].

e Spatio Temporal Measurements: A spatio-temporal value spans a whole region. This
could be traffic flow, air pollution, noise, etc. The sudden rise or decline of these values
indicates an anomaly.

e Heterogeneous Data Streams: The combination of previously described types of anoma-
lies provides event filters in an urban environment based on heterogeneous data (e.g.
GPS data of pedestrians, traffic loop data, mobile phone network data).

In general functions for event detection from heterogeneous data streams can be classi-
fied using a former concept of raster-geography, namely map-algebra [Ber09]. Both, raster
geography and heterogeneous spatio-temporal data analysis consider data which is provided

D5.2, Version 1.0, 31/08/2015 12 http://www.insight-ict.eu/
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in multiple layers (i.e. one layer per data stream). Functions can be applied to one or multi-
ple layers. Thus, spatial functions split into four groups: local, focal, zonal and global ones
[BerQ9], illustrated in Figure 3.

e [ocal functions operate on every single cell in a layer. And the cell is processed without
reference to surrounding cells. An example is a map transformation, the multiplication
with a constant, or the comparison with a threshold.

e Focal functions process cell data depending on the values of neighboring cells. The
neighborhood can be defined by arbitrary shapes. Example functions are moving averages
and nearest neighbor methods.

e Zonal functions process cells on the base of zones, these are cells that hold a common
characteristic. Zonal functions allow the combination of heterogeneous data streams
in various layers by application of functions to one layer if another layer already fulfills
another condition.

e Global functions process the entire data. Examples are distance based operations.

local focal zonal global

Figure 3: Function classes on Spatio-Temporal data, Dark blue highlights the currently pro-
cessed location. Light blue cells indicate the regions whose values are used for computation.
Best viewed in color.

For analysis of heterogeneous data streams, expressiveness of these four function types is
important to derive low-level events (incidents), to combine low-level events (e.g. aggregation,
clustering, prediction etc.), and to trigger high-level events [SL15]. For the latter, the event
sequences can be matched against predefined spatio-temporal event patterns that indicate the
occurrence of a high-level event.

The exploitation of spatio-temporal event patterns is a major research field in mobility
mining. Event pattern matching focuses on the task to match sequences of events against
event patterns and to trigger another event (which is raised for further analysis) in case the
sequence matches. For this purpose, recently, pattern-graphs were introduced in [PHB12],
their pattern description is capable to express the temporal relations among various occurring

D5.2, Version 1.0, 31/08/2015 13 http://www.insight-ict.eu/
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events following the interval-calculus [All83]. As an example, the co-occurrence of two low-
level events may trigger any high-level event. With spatio-temporal data streams also spatial
relations are important to consider. The region connection calculus [RCC92] lists relations of
spatial events that are essential for spatio-temporal pattern matching.

Possible frameworks for event pattern matchers are the event calculus [SPVAL1], finite
automaton [FKMM12] and other pattern matcher [DGP*07, PHB12] or even complex frame-
works which allow application of local, focal, zonal and global functions e.g. [SG11, GKS*13].
The requirements for spatio-temporal pattern matcher in an autonomous event identification
system (EIS) are:

e to operate in real-time,
e to incorporate spatial [RCC92] and temporal [All83] relations,
e to provide local, focal, zonal, and global [Ber09] predicates on the attributes, and

e to pose arbitrary queries formed of these elements (regular language [dMRS05], Kleene
closure [GADI08]).

In Table 2 we compare the features of state-of-the-art event detection frameworks. The
temporal expressiveness is split into the following four categories:

e Pattern Duration is a constraint on the temporal distance of first and last condition in
a pattern.

e Condition Duration is a constraint on the duration of a condition to get matched.

e Inter-Condition Duration is a constraint on the temporal distance among succeeding
conditions.

e Complete indicates the complete integration of the temporal relations [All83].

The Table compares the approaches from the literature against the INSIGHT Round Table
architecture, we introduced in D2.1, D4.1 and published in [SLM*14]. This approach is
inspired by the TechniBall system [GKS™13], previous works on stream data analysis [FAAT13]
and follows the Lambda architecture design principles for Big Data systems [Marl3]. In
this architecture every data stream is analysed individually for anomalies. In this detection
functions (e.g. clustering, prediction, thresholds, etc.) on the data streams can be applied.
The resulting anomalies are joined at a Round Table. A final Complex Event Processing
component allows the formulation of complex regular expressions on the function values derived
from heterogeneous data streams. As can be observed the INSIGHT architecture overcomes
limitations of existing event matching frameworks. Next section will focus on the analysis of
the individual data streams.

D5.2, Version 1.0, 31/08/2015 14 http://www.insight-ict.eu/
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duration | condition | duration | [RCC92] | sions ing
duration
Mobility Pattern [dMRSO05] | - v - - - v - - - - -
SASE [GWCT07] - v - v - v v v v v v
SASE™ [DIG07] - v - - - v v v v v v
Cayuga [DGPT07] - - - v - v v v v v v
Spatio-Temporal Pattern v v v v v v v v v v -
Queries [SG11]
Mobility Pattern Stream - v - v - v - - - - v
Matching [FKMM12]
Event calculus [SPVAL1L, v v - v - v v v v v v
AWGT13]
Temporal Pattern Graphs v v v v - v v - - - v
[PHB12]
INSIGHT architecture v v v v v v v v v v v

[SLM*14]

Table 2: Comparison of Spatio-Temporal event detection frameworks [SL15].
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More Information

Q F. Schnitzler, T. Liebig, S. Mannor, G. Souto, S. Bothe, and H. Stange, Het-
erogeneous Stream Processing for Disaster Detection and Alarming, in IEEE

International Conference on Big Data, 2014

G. Souto and T. Liebig, On Event Detection from Spatial Time series for Urban Traf-
fic Applications, in Solving Large Scale Learning Tasks: Challenges and Algorithms,
Springer International Publishing, 2015, p. (to appear).

2.3 Review of Analysis Methods from D5.1

The spatio-temporal data streams we utilize for event detection and prediction comes in a
variety of forms and representations, depending on the domain, the observed phenomenon,
and the observation method (compare D5.1). In principle, there are three types of spatio-
temporal data: spatial time series, events, and trajectories.

e A spatial time series consists of tuples (attribute, object, time, location).

e An event of a particular type event; is triggered from a spatial time se-
ries under certain conditions and contains the tuples verifying these conditions
(event;, object,, time,, location,,).

e A trajectory is a spatial time series for a particular object;. It contains the location per
time and is a series of tuples (object;, time,, location,,). Every timestamp time, is
contained at most once.

The types may be transformed to accommodate different analysis tasks and goals; this is focus
of WP3.

In previous report on end-user requirements, test data, and on prototype definitions (D5.1)
we have identified initial tasks for spatio-temporal data analysis that are relevant for the
INSIGHT applications, during the cause of the project we tailored this list further to the use
cases, The analysis methods we used so far are reported in D3.2 and D3.3 as well as D4.1
and D4.2. In this report we show the application of these methods in the Intelligent Sensor
Agent Components and their evaluation on the use cases test data. According to previous
deliverables (D3.1, D3.2, D4.1, D4.2) the revised list of methods described in this deliverable
therefore comprises:

1. Gaussian Process Regression for imputing a data point based on its neighbours,

2. Spatio-temporal Markov Random Fields for the prediction of future measurement values,
3. Statistical Tests for outlier detection,

4. Snapshot prediction for bus delay prediction,

5. Complex Event Processing for outlier detection from bus data,
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6. Deep Neural Networks for semantic role labeling of Twitter messages
7. Transformation of geo-locations for map matching,

8. Text classification for identification of traffic incidents.
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3 Description of Alarming and Prediction Components

This section presents how methods from Deliverables D5.1, D3.2, D3.3, D4.1 and D4.2 are
applied to the use case scenarios. For evaluation purposes, the methods that are incorporated
in the INSIGHT system are applied to the test data, we identified in D5.1. The section is
structured by data source as highlighted in Table 3.

Data Source Intelligent Sensor Agent (ISA) Section
SCATS Prediction and Route Planning 3.1
SCATS Outlier Detection 3.2
BUS Delay Time Prediction 3.3
BUS Outlier Detection 3.4
Mobile Phone Data | Outlier Detection 3.5
Twitter Identifying Traffic 3.6
Twitter Semantic Outlier Detection 3.7

Table 3: List of Intelligent Sensor Agents by data source.

3.1 Vehicular Traffic Prediction and Route Planning

Smart route planning gathers increasing interest as Dublin and other cities become crowded
and jammed. In this section, we present the trip planning ISA that incorporates future traffic
hazards in routing. Future traffic conditions are predicted by a Spatio-Temporal Random
Field based on a stream of sensor readings, as previously described in D3.2. In addition, our
approach estimates traffic flow in areas with low sensor coverage using a Gaussian Process
Regression. The conditioning of spatial regression on intermediate predictions of a discrete
probabilistic graphical model allows to incorporate historical data, streamed online data and a
rich dependency structure at the same time.

General architecture We give an overview of the system architecture to address the ve-
racity, velocity and sparsity problems of urban traffic management. This section describes the
input and output of the system, the individual components that perform the data analysis,
and the stream processing connecting middleware.

We built the system aiming real-time streaming capabilities. Based on the streams frame-
work, the core engine is a data flow graph that models the data stream processing of the
incoming SCATS data. As can be seen in Figure 4, this data flow graph contains the SCATS
data source as well as several nodes that represent preprocessing operations.

With the service layer API provided by streams, we export access to the traffic prediction
model to the OpenTripPlanner component. The OpenTripPlanner provides the interface to
let the user specify queries for route planning. Based on a given query (v, w) with a starting
location v and a destination w, it computes the optimal route v — py...pr — w based
on traffic costs. Here we plug in a cost-model for the routing that is based on the traffic
flow estimation and the current city infrastructure status. This cost-model is queried by
OpenTripPlanner using the service layer API.
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Figure 4: Architecture of Prediction and Route Planning ISA.

Traffic Model The key component of our system is the traffic model. It combines two
machine learning methods in a novel way, in order to achieve traffic flow predictions for nearly
arbitrary locations and points in time. This traffic model addresses multiple facets of the
trip planning problem: i) sparsity of stationary sensor readings among the city, ii) velocity of
real-time traffic readings and computation, and iii) veracity of future traffic flow predictions.

Based on a stream of observed sensor measurements, a Spatio-Temporal Random Field
[PLM13] estimates the future sensor values, whereas values for non-sensor locations are esti-
mated using Gaussian Processes [LXMW12]. To the best of the authors knowledge, streamed
STRF+GP prediction has not been considered until now and is therefore a novel method for
traffic modelling.

A Gaussian Processes denotes the covariances among the variables by a matrix which hast
to be inverted for Gaussian Process Regression (GPR). This results in a high computational
complexity. In [Liel4] we show that it is sufficient for imputation of an unknown measurement
to consider just the closest observations (due to spatial autocorrelation of the traffic flow). This
heuristic converts the GPR into a tractable problem, as the complexity of the matrix inversion
can be kept constantly low by subsequent processing of unmonitored locations respecting their
k nearest observations. Similar assumptions are made by STRF and kNN methods.

OpenTripPlanner OpenTripPlanner (OTP) is an open source initiative for route calcula-
tion. The traffic network for route calculation is generated using data from OpenStreetMap
and (eventually) public transport schedules. Thus, OpenTripPlanner allows route calculation
for multiple modes of transportation including walking, bicycling, transit or its combinations.
However, vehicular routing is possible, but for data quality reasons in OpenStreetMap con-
cerning the turning restrictions [SP12] it is not yet advisable in all regions.

The default routing algorithm in OTP is the A* algorithm [HNR68| which utilizes a cost-
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heuristic to prune the Dijkstra search [Dij59]. At every considered intermediate location (be-
tween start and target location) the cost-heuristic estimates a lower bound of the remaining
travel costs to the target. The cost estimate for traversing this intermediate location is calcu-
lated using the sum of the costs to the location and the estimated remaining costs.
OpenTripPlanner consists of two components an APl and a web application which interfaces
the API using RESTful services. The API loads the traffic network graph, and calculates the
routes. The web application provides an interactive browser based user interface with a map
view. A user of the trip planner can form a trip request by selecting a start and a target
location on the map, see Section 4.1.4 for description of the user interface. Besides the web
application there exist OpenTripPlanner user interfaces for mobile devices. The variety of
existing user interfaces stresses the sustainability of our decision for OpenTripPlanner.

Empirical Evaluation For evaluation, we used real data streams obtained from the SCATS
sensors of Dublin city. The data was collected between January and April 2013 and comprises
~ 9GB of data, compare D5.1. The SCATS dataset includes 966 sensors. SCATS sensors
transmit information on traffic flow every six minutes.

For the experiments in Dublin, the traffic network is generated based on the Open-
StreetMap! data. In the preprocessing step the network is restricted to a bounding window of
the city size. Next, every street is split at any junction in order to retrieve street segments.
In result we obtain a graph that represents the traffic network. The SCATS locations, are
mapped to their nearest neighbours within this street network.

In the preprocessing step the sensor readings are aggregated within fixed time intervals.
We tested various intervals and decided for 30 minutes, as lower aggregates are too noisy,
caused by traffic lights and sensor fidelity.

The spatial graph that is required for the STRF is constructed as k-nearest-neighbor
(kNN) graph of the SCATS sensor locations, compare D3.2. In what follows, a 7NN graph
is used, since a smaller k induces graphs with large disconnected components and a larger
k results in more complex models without improving the performance of the method. The
fact that no information about the actual street network is used to build Gy might seem
counterintuitive, but undirected graphical models like STRF do not use or rely on any notion
of flow. They rather make use of conditional independence, i.e. the state of any node v can
can be computed if the states of its neighboring nodes are known. Thus, the kNN graph
can capture long-distance dependencies that are not represented in the actual street network
connectivity. The maximum traffic flow value that is measured by each SCATS sensor in each
30-minutes-window is discretized into one of 6 consecutive intervals. A separate STRF model
for each day of the week is constructed and each day is further partitioned into 48 snapshot
graphs, since we can divide a day into 48 blocks of 30 minutes length. The model parameters
are estimated on SCATS data between January 1 and March 31 2013 and evaluated on data
from April 2013.

The evaluation data is streamed as observed nodes into the STRF which computes a new
conditioned prediction for all unobserved vertices of the spatio-temporal graph whenever time
proceeds to the next temporal snapshot. The discrete predictions are then de-discretized by
taking the mean of the bounds of the corresponding intervals and subsequently forwarded to

1OpenStreetMap: http://www.openstreetmap.org
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the Gaussian Process which uses these predictions to predict values at non-sensor locations.
Notice that although the discretization with subsequent de-discretization seems inconvenient
at a first glance, it allows the STRF to model any non-linear temporal dynamics of the sensor
measurements, i.e. the flow at a fixed sensor might change instantly if the sensor is located
close to a factory at shift changeover.

Application of Gaussian Processes requires a joint multivariate Gaussian distribution among
the considered random variables. In our case, these random variables denote the traffic flow
per junction. Literature on traffic flow theory [Lay09, Dav97] tested traffic flow distributions
and supports a hypothesis for a joint lognormal distribution. We test our dataset for this
hypothesis. Thus, we apply the Mardia [Mar70] normality test to the preprocessed data set.
The test checks multivariate skewness and kurtosis. We apply the implementation contained in
the R package MVN [KG13]. The tests confirmed the hypothesis that the recorded traffic flow
(obtained from the SCATS system) is lognormal distributed. Thus, application of Gaussian
Processes to log-transformed traffic flow values is possible. The hyper-parameters for the GP
are chosen in advance using a grid search. Best performance was achieved with o = 1/2
and 8 = 1/2. The STRF provides complete knowledge on future sensor readings which is
necessary for our GP. As the STRF model performs well [PLM13], we set the noise among the
sensor data in our GP to a small variance of 0.0001.

The OpenTripPlanner creates a query for the costs at a particular coordinate in space-time.
The query is transmitted from the route calculation to the traffic model. There, the query is
matched to the discrete space. The spatial coordinates are encoded in the WGS84 reference
system [Nat00]. To avoid precision problems during the matching between the components,
the spatial coordinate is matched with a nearest neighbour method using a KDTree data
structure [Moo91]. The nearest neighbor matching offers also the possibility to query costs
for arbitrary locations. The timestamp of the query is discretized to one of the 48 bins we
applied in the STRF.

Figure 5, shows different routes which are calculated for a particular Monday (8th April
2013) among a fixed start and a fixed target at different time stamps. The figure reveals that
different routes are calculated depending on the traffic situation. In [SLM15] we considered
an alternative distributed architecture for traffic flow distribution.

B nE AN o BT . #

Figure 5: Results of route calculations for fixed start and target at different timestamps
(from left to right: 7:00, 8:00, 8:30). Best viewed in color.
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3.2 Anomaly Detection in Vehicular Traffic Streams

The SCATS data stream contains meaningful information regarding the traffic condition at
different junctions in Dublin city. Monitoring the SCATS data could help in the detection of
traffic anomalies. We created simple rules that check whether the streaming data exceeds a
specific value. More specifically we check whether the moving average of the last 5 reported
degree of saturation values for every SCATS sensor exceeds a predefined value. This threshold
was tuned accordingly, using DCC traffic operators feedback. We decided to check the moving
average, as it is less noisy and at the same time it is possible to reduce the number of false
positive reported alarms. This approach identifies traffic anomalies at a specific lane of a
junction that is facing high congestion. An example of an identified events is presented in

Figure 6.

High Degree of Satuwration {D5) observed for a particular SCATS sensor
i riad |

Attribute |‘u'alue
il | | 0l

Figure 6: Message generated from the SCATS analysis detection system.

Related Approaches Stolpe et. al. propose [SBDM13] a Vertically Distributed Core Vector
Machines (VDCVM) algorithm for anomaly detection which is based on Core Vector Machine
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(CVM) algorithm [BC08]. The VDCVM has two components, the Central Node F, which
coordinates the entire system and the Data Node P;...P, which detects the anomalies in a
distributed manner. The Data Node has two more sub-components, the Worker and Data
Repository. The anomaly is detected locally by each Worker through a local model and sent
to the Central Node along with a small sample of all observations. Then, the Central Node
trains a global model on such a sample and used to define whether the sent observation is an
anomaly or not. The advantage of this work is the good communication cost between Workers
and the Central Node in the training phase, but this approach cannot detect anomalies which
are global due to a combination of features, and that is its disadvantage. In [YKB14], Yang
et. al present a non-parametric Bayesian method, or Bayesian Robust Principal Component
Analysis (RPCA) - BRPCA, to detect traffic events on road. This method takes the traffic
observations as one dimension data (1-D) and converts it into a matrix format which in turn
decomposes it into a superposition of low-rank, sparse, and noise matrices. The idea of BRPCA
is to improve the traffic detection by sharing a sparsity structure among multiple data streams
affected by the same events. Such an approach uses multiple homogeneous data streams and
a static weather data source in the detection process. The advantage of this work is the
generating of a Ground Truth by 3 expertises in the traffic domain which reviewed different
plots. However, the approach is limited to detect only 3 types of traffic events which are Slow
down, Unexpected high traffic volume and traffic jam. Guo et al. [GHW14] propose a traffic
flow outlier detection approach which focuses on the pattern changing detection problem to
detect anomalies in traffic conditional data streams. The traffic data comes from inductive loop
sensors of four regions in United State and United Kingdom, as well as this works makes use
of a short-term traffic condition forecasting system to evaluate the proposed approach. This
approach performs the analysis of the incoming data point after the data point be processed
by Integrated Moving Average filter (IMA) which captures the seasonal effect on the level
of traffic conditional series, and then Kalman Filter picks up the local effect flow levels after
IMA, and GARCH Filter models and predict time-varying conditional variance of the traffic
flow process. These Filters constitute together the integrated forecast system aforementioned.
Trilles et al. [Trilles et al. 2015] propose a variation of CUmulative SUM (CUSUM) algorithm
in Storm Framework to detect anomalies in data streams near to Real-Time. This approach is
only applied when the observations are in-control, that is, the data is normal distributed. The
events are detected, if the cumulative sum exceeds the threshold (CUSUM control charts),
then it is an Up-Event due its increase and if the cumulative sum is lower than a threshold
(CUSUM control charts), then it is a Decrease-Event. However, the work does not present
experiments with a data source which has high refresh rate such as SCATS data stream.

Other works also propose solutions to detect anomaly traffic events such as [LZC*11,
YL11, PCLZ13, PZWS13, YKB14]. However, these solutions make use of moving sensors
such as GPS, and we have been focusing on static sensors.

3.3 BUS - Delay Time Prediction

In this part, we focus on prediction of traveling times, which can be announced to the
passenger that uses Dublin buses, in an online fashion. Here, we developed a prediction
engine that, given a scheduled bus journey (route) and a ‘source/destination’ pair, provides
a prediction for the traveling time, while considering both Machine Learning techniques
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Figure 7: A real-time prediction engine.

that generalize from historical data, and methods that are grounded in Queueing Theory,
which use real-time streams of information that are transmitted from the bus to correct the
history-based prediction.

System’s Architecture. Figure 7 presents the proposed two-component system, its inputs,
outputs and the flow of information throughout the system. The first input into our system
is a historical extract of the GPS Bus Data. During every bus journey, the Global Positioning
System (GPS) location of the bus, along with other parameters, are transmitted (as real-time
streams) and stored into a repository (managed by Dublin City Council). The data is then
available for analysis in an off-line manner; however, the streams of data may also be used in
real-time in what we refer to in Figure 7 as ‘GPS Bus Stream’. Further information about the
data repository is available in Deliverable 5.12.

The second input to our system is a Machine-Learning based prediction model for traveling
times, denoted ‘Model’ (e.g. decision trees). Given the data and a model, an off-line static
prediction component is constructed; we refer to it as ‘Static Data-Driven Model’, since it is
based only on past data and is not dynamically updated. The component provides an estimate
for the traveling time that accounts for regular events, i.e. hours in which changes in traffic
are predictable.

2http://www.insight-ict.eu/sites/default/files/deliverables/D5-1.pdf
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However, it turns out that the static model is often insufficient, since unpredictable
changes in traffic (e.g. accidents, social events) may occur during a bus journey. These clearly
influence the remaining traveling time for that journey and must therefore be accounted for
in real-time. The second components of the proposed system, the ‘Dynamic Stream-Driven
Model’, first identifies these unpredictable variants of regular hours and consequently updates
the prediction in a dynamic fashion by using principles of Queueing Theory.

Data Modeling and Cleaning. Prediction of traveling time may exploit historical data on
scheduled journeys or real-time streams of information on recent movements of vehicles. This
section defines a common model for these types of information by means of the notion of a
Journey log (J-Log). A J-Log is a set of sequences of recorded journey events of scheduled bus
trips, each sequence being partially ordered by the timestamp that indicates the occurrence
time of an event. A J-Log is a particular type of an event log, as they are known, for instance,
in the field of business process mining.

We illustrate the notion of a J-Log using data of the bus network in the city of Dublin.3
Here, location of buses is sampled in intervals of 5 to 300 seconds (20 seconds on average),
depending on the current location of the bus. For each event the following data is submitted
to a monitoring system:

e A timestamp of the event.
e A vehicle identifier for the bus.

e A bus stop relating the bus to the stop on its journey with maximal proximity. Hence,
every event has a bus stop identifier, even when the bus is not at the stop.

e A journey pattern that defines the sequence of bus stops for a journey.

Based on this input data, the construction of a J-Log as defined above is trivial; timestamps,
bus stops and journey patterns are given directly in the input. To partition the events into
journeys, a combination of the vehicle identifier and the journey pattern is used. An excerpt of
the J-Log for the bus data from the city of Dublin is presented in Table 4. It features intuitive
values for the attributes (e.g., stop “Parnell Square”) as well as their numeric representation
according to our formal model (e.g., 264 identifies the stop “Parnell Square™).

Model of Segmented Journeys. To address the problem of traveling time prediction, as a
first step, we construct a model that establishes a relationship between different journeys by
means of visited bus stops. To this end, journeys are modeled as segments of stops (Figure 8).
This segmented model, in turn, allows for fine-granular grounding of the prediction of traveling
time: instead of considering only journeys that follow the same sequence of stops, we consider
all journeys that share some segments can be used for prediction.

Below, we first describe the segmented model for journeys. A journey log (J-Log) is built
of multiple journeys, where a journey is a sequences of events that are emitted by a bus as part
of a particular trip. In order to rely on the aforementioned segmented model as the basis for
the traveling time predictors, in a first step, we transform the J-Log into a Segmented J-Log
that is built of timing information for segments.

3See also http://www.dublinked.ie/ and http://www.insight-ict.eu/

D5.2, Version 1.0, 31/08/2015 25 http://www.insight-ict.eu/


http://www.dublinked.ie/
http://www.insight-ict.eu/

INSIGHT FP7-318225

Table 4. Example J-Log from buses in Dublin.

Event  Journey  Timestamp Bus Stop Journey
Id Id Pattern
1 36006 1415687360  Leeson Street Lower (846)  046A0001
2 36012 1415687365  North Circular Road (813) 046 A0001
3 36009 1415687366  Parnell Square (264) 046 A0001
4 36006 1415687381  Leeson Street Lower (846) 046 A0001
5 36009 1415687386  O’'Connell St (6059) 046 A0001
6 36012 1415687386  North Circular Road (814)  046A0001
7 36006 1415687401  Leeson Street Upper (847) 046A0001
8 36009 1415687406  O'Connell St (6059) 046.A0001
source A B destination
,Segment AB
N\ 7

Figure 8: A segmented model of traveling times.

A Segmented J-Log is a sequence of segment events that capture information on the start
and end bus stop of the segment, the journey from which the segment event was derived, the
respective journey pattern, and the start and end timestamps observed for the segment. The
last two elements are computed using the earliest time the particular journey reached the start
and end bus stop. A Segmented J-Log is constructed from the journey events of all journeys
in a J-Log. That is, a segment event is derived from two journey events of the same journey,
such that (1) the journey events refer to two successive bus stops of the journey pattern, and
(2) the journey events are the earliest events referring to these two bus stops. We capture
this construction as follows.

A Segmented J-Log can be trivially constructed from a J-Log. However, in many real-world
applications, the recorded data is incomplete due to data loss, unavailability of data recording
devices, or data sampling. Then, it may be impossible to construct a segment event for each
pair of successive bus stops of all journeys. For instance, for the data of the bus network in the
city of Dublin described in the aforementioned data example, due to data sampling, the raw
data does not necessarily contain a journey event for each bus stop of the respective journey
pattern.

For a journey pattern and a journey recorded in the J-Log, we consider the following three
cases of missing sequences. There is a sequence of missing journey events:

e between two consecutive recorded journey events.

e that includes the first bus stop.
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e that includes the last bus stop.

In this section, we show how to use complementary information on the geographical distances
between bus stops and principles of kinematics (relating distances to velocity and time) to
impute missing journey events and their corresponding timestamps.

Prediction Techniques - Static vs. Dynamic. As we mentioned before, the prediction
methods we present can be divided into two types. The first type comes from Machine Learning
and is based on decision trees. The feature space includes also recent information that is
considered by the first-type predictor. Both prediction methods make use of the segmented
model of journeys and on the Segmented J-Log. The second type consists of a method that
comes from Queueing Theory and approximates systems in heavy-traffic. The predictor is
non-learning, in the sense that it does not generalize prediction from historical events, but
rather uses recent events to predict future traveling times. We now introduce the snapshot
principle for traveling time prediction

The snapshot principle is a heavy-traffic approximation that refers to the behavior of a
queueing model under limits of its parameters, as the workload converges to capacity. In our
context it means that a bus that passes through a segment, will experience the same traveling
time as another bus that has just passed through that segment (not necessarily of the same
type, line, etc.). In real-life settings, the heavy-traffic approximation is not always plausible
and thus the applicability of the snapshot principle predictors should be tested ad-hoc, when
working with real-world data sets.

In our case however, the snapshot predictor needs to be lifted to a network setting. In-
cidentally, based on results from Queueing Theory, the snapshot principle holds for networks
of queues, when the routing through this network is known in advance. Clearly, in scheduled
transportation such as buses this is the case as the order of stops (and segments) is predefined.
We hypothesize that the snapshot predictor performs better whenever recent buses are in time
proximity to the current journey. We test this hypothesis in the empirical evaluation of our
techniques.

Now, we describe the use of Machine Learning and, more specifically, of regression tech-
niques to predict the bus traveling time. As opposed to the snapshot method described above,
Machine Learning techniques exploit past journey logs to learn a prediction model, and then
use this model to make a prediction on new instances of the problem, in our case, traveling
times as part of current journeys. Below, we discuss the features that we use, as the basis to
the Machine Learning techniques. Then, we briefly describe the generic regression algorithms
that we apply to solve the problem. Finally, we integrate the snapshot predictor with Machine
Learning methods.

The features we consider are

e The travel time of the last bus that used that segment;
e The interval between the time the last bus left the segment;
e The day of the week; and

e The time of the day (hours, minutes, seconds).
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The first two features are computed from the Segmented J-Log and therefore depend on the
information available when the prediction is made, at time ¢.

Once the features are selected, we are ready to briefly present the regression algorithms ap-
plied to the aforementioned features. These algorithms all output ensembles Wy, = {v,,, }M_,
of M regression trees. A regression tree is a tree where each internal node is a test on the
value of a feature, and where each leaf corresponds to a value of the target variable, in our
case traveling time. An instance goes down from the root to a leaf by selecting at each internal
node the branch corresponding to the result of the test of that node. The predicted value for
that instance is the value associated with the leaf it reaches. Ensembles are sets of regression
trees. The value predicted by the ensemble is typically the (potentially weighted) average of
the values predicted by each tree of the ensemble:

‘IJM() = Z )‘mwm<) )

where )\, is the weight of tree 1,,,. Using an ensemble rather than a single model typically
leads to an improvement in accuracy . We briefly describe below the methods we considered
to build ensembles. We note that our selection of these methods cannot be comprehensive.
However, since our focus is on a comparative analysis with the snapshot-based method for
prediction, a selection that covers a variety of different techniques is sufficient.

A random forest (RF) is an ensemble built by learning each tree on a different bootstrap
replica of the original learning set. A bootstrap replica is obtained by randomly drawing (with
replacement) original samples and copying them into the replica. Each tree is learned by
starting with a single leaf and greedily extending the tree. Extension consists of considering
all possible tests (features and values) at all leafs and splitting the leaf using the test that
maximizes the reduction in quadratic error. The tree weights are all equal A\, = 1/M.

Extremely randomized trees (ET) is an ensemble where each tree was learned by ran-
domizing the test considered during greedy construction. Instead of considering all values of
the features for the split test, only a value selected at random is considered for each feature
(and leaf). The tree weights are all equal \,,, = 1/M.

AdaBoost (AB) builds an ensemble iteratively by reweighting the learning samples based
on how well their target variable is predicted by the current ensemble. The worse the prediction
is, the higher the weight becomes. Therefore, the next tree constructed focuses on the most
‘difficult’ samples. Given the m'™ model v, : X — ) learned from a learning set {z, yx }o_,

with weights w", the next weights w}"™" are computed as follows:

k J
Pt =g

The value predicted is the weighted median of the predictions of the trees, where the weight
of each tree 1, is —log (3,,. Initial weights are all equal to 1/N. AB is typically used with
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weak models, that do not model the data well outside an ensemble. For this reason, the depth
(number of tests before reaching a leaf) of regression trees is typically limited when they are
combined using AdaBoost. In our experiments, we tried both a depth of 1 and 3. The latter
was almost always better, so we will only report the corresponding results. Except for this
limitation, trees are learned greedily on the re-weighted learning sets.

Gradient tree boosting (GB) is another boosting algorithm. Instead of weighting the
samples, GB modifies modifies the target variable value for learning each tree. The values
used to learn the m'" tree are given by

Uk = Yp — U1 (o) - (1)

The new tree is trained on the prediction error g;. In this algorithm, the model weights are
replaced by leaf weights A , where [ is a leaf index. The leaf weight is given by \,, = 17! .

m?

v is a regularization term (equal to 0.1 in our experiments). ~., is optimized by line search:

~t, = argmin Z (s — [T () + Y (1))

k:reach(xk,Ym,l)

where reach(xy, ¥, 1) is true if z reaches leaf [ in the tree v,,,. This ensemble is initialized
by a tree learned on the unweighted learning set. We also considered a more robust version
of this algorithm, denoted by GBLAD, that optimizes the absolute deviation error instead of
the mean quadratic error. The most important changes are that each tree is constructed on a
learning set {x, sign(yx)}, and the value of each leaf is the median of the prediction errors
of the training samples that reach it.

Now, we show a combination of the snapshot predictor and the Machine Learning
techniques. The snapshot method stems from Queueing Theory and was demonstrated to
perform well in practice, for delay prediction in various settings where heavy traffic (resource
queues) produces these delays. Since bus delays are often induced by car traffic, it is tempting
to use it as a baseline and try to improve over it. Boosting algorithms appear particularly
suited for that task, since they construct ensembles of models sequentially, based on the
results of the previous models in the ensemble. Following this line of reasoning, we modify the
three boosting algorithms discussed above (AB, GB and GBLAD). That is, the first model
considered in the boosting is the snapshot model. We respectively denote the three resulting
algorithms S+AD, S+GB and S+GBLAD.

Empirical Evaluation. Here, we introduce our experimental setting, and discuss the main
findings of our empirical evaluation. We shall now describe the construction of two datasets,
the training set and the test set that we used for our experiments. First, the training set
was used to train our Machine Learning methods and construct learning sets for each of the
segments. Then, a test set of all trips (and sub-trips) was constructed to test both the Machine
Learning and the Snapshot predictors.

The training set in our experiments consists of 8 days of bus data, between September and
October of 2014. Each day contains approximately 11500 traveled segments. Essentially, the
learning set is a Segmented Journey Log for those 8 days. Note that the first trip for a certain
day will not include the last bus to go through a segment during that day. The data comes
from all buses that share segments with line 046 A, since it is the only line that we analyze via
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the test set. Hence, we exploited traveling time information from additional lines that share
segments with 046A.

The test set comprises bus data from a single day, September 22nd, 2014. We considered
actual trips of line 046 A, which is one of the lengthiest lines in the city of Dublin (58 stops).
First, the line travels through city center, where traffic can become extremely hectic and a
large number of passengers may cause stopping delays. Then, it goes through a highway
section and lastly it visits a suburban area where the delays are mostly due to frequent get-offs
of passengers. During that day, the line has traveled through 111 journeys, all of which were
included in our test set.

For the Machine Learning methods, we used the scikit-learn (Python) implementation
of the algorithms to create ensembles of regression trees. Also, we relied on ensembles of
M = 100 trees, unless otherwise stated. The algorithms that combine the snapshot method
with Machine Learning (S+AD, S+GB and S+GBLAD), therefore contain 99 trees in addition
to the snapshot model.

The main results of our experiments are:

e Prediction methods that combine the snapshot principle and Machine Learning tech-
niques are superior in quality of prediction to both snapshot predictors and Machine
Learning methods (that do not include the snapshot predictor).

e The prediction error increases with the number of bus stops per journey. However, when
considering the relative error, it is stable for all trip lengths, i.e. the predictors do not
deteriorate proportionally to length of the journey (in stops).

e Surprisingly, the snapshot predictor does not deteriorate for longer trips, therefore con-
tradicting the hypothesis that the snapshot predictor would be more precise for journeys
with higher temporal proximity to the current journey.

More Information

Q Gal, A., Mandelbaum, A., Schnitzler, F., Senderovich, A., Weidlich, M. (2014).
Traveling Time Prediction in Scheduled Transportation with Journey Segments.

Technical report, Technion-Israel Institute of Technology.

Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A., Kadish, S., Bunnell, C. A.
Discovery and Validation of Queueing Networks in Scheduled Processes.

3.4 BUS - Outlier Detection

The buses that move in Dublin city periodically transmit their position and information re-
garding their route to the Dublin City traffic control center. The buses can be thought as
moving sensors that provide useful information especially for areas that could not be covered
from static sensors (SCATS, CCTV cameras). It is very important to collect and analyse the
received raw bus data in order to automatically identify anomalous events or events of an
emergency that happen in Dublin.
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Figure 9: BUS ISA architecture.

System’s Architecture: In order to monitor the bus data stream and identify anomalies
in real-time we used a system architecture similar with the one described in D3.2 at Section
3.2, named “A Scalable Architecture for Traffic Monitoring” and presented in Figure 9. The
proposed system consisted of the following components:

e A distributed Stream Processing System (Storm) that is responsible to route the incom-
ing streaming bus data to the appropriate processing unit.

e A batch processing framework (Hadoop) that is responsible to process the batch data
and identify the normal traffic behaviour for different areas of the city.

e A distributed database where the received data are stored (MongoDB).

e A storage medium where the statistics, calculated from the Hadoop jobs, are stored
(MongoDB).

e Multiple Complex Event Processing (Esper) engines distributed at different cluster nodes,

initialized with different rules and used in order to detect events of interest at the city
of Dublin.

Data Preprocessing: In order to extract meaningful information from the raw data we
preprocessed them and we enhanced them with new features. When a new tuple was received
from a particular bus, new information was calculated such as the vehicle's speed and moving
direction of the bus. In addition when a bus stopped at a bus stop we calculated the time
needed to travel from the previous bus stop to the current. This time is sent to the Esper
engine in order to find whether increased times to travel between two consecutive bus stops
are observed.

Supporting Dynamic Rules: Given that we look for abnormalities during the course of the
day for different pairs of bus stops, we compute statistics continuously and update the rules
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accordingly. These statistics are calculated using Hadoop jobs. The jobs are invoked periodi-
cally, e.g., every week, to compute statistics for the different bus stops’ pairs. Specifically, the
job calculates the mean and standard deviation of the time needed to go from one stop to the
next for different hours of the day and different types of days (weekdays or weekends). In the
map phase the historical data are retrieved from the distributed MongoDB and then they are
emitted to the reduce tasks. The reducers aggregate the parameters values for the different
spatial locations and then compute the mean and the standard deviation for the time needed
to travel two consecutive bus stops for different hours and days. The calculated statistics
are stored in another collection of the MongoDB server and are retrieved during the online
processing to be used as thresholds for the running rules.

Rules Description: The rules that we applied follow the general rule template that was
described in D3.2. The main rule that we use checks whether the average observed time,
needed to travel two consecutive bus stops, exceeds the expected time. This rule uses as input
the times reported from the last 10 buses that moved between these two consecutive bus stops.
The Esper code of the previously described rule is presented in Listing 1 and contains three
streams, defined in the FROM clause. The first stream contains the last time from stop to
stop that was arrived in the system. The second stream contains the last 10 times from stop
to stop, for each pair of consecutive bus stops, that arrived in the system. The last stream,
named statsS2S, contains all the statistics for all the possible pair of stops for different hours
of day and for weekdays and weekends. This stream which contains the thresholds is loaded
in the Esper Enginge in advance, when the engine is initialized. The streaming data join with
this stream in order to retrieve their thresholds. The rule is fired when the average value is
greater than the threshold for that particular hour and day, as it is defined in the WHERE
clause. The threshold is set to be 3 times the standard deviation away from the mean. When
this rule is fired it sends to the listener the information defined in the SELECT clause. More
specifically it will return (i) the timestamp of the event (ii) the hour of the day (iii) the type
of day (weekday or weekend) (iv) the bus stop ID where the bus started (v) the bus stop
ID where the bus ended up (vi) the average time required from the last 10 buses to travel
these two bus stops (vii) the mean value of the time required to travel these two bus stops
as it is calculated from the Hadoop job (viii) the standard deviation of the time required to
travel these two bus stops as it is calculated from the Hadoop job. Finally this information
is collected from the listener that creates a message that is forwarded to the traffic operators
and is presented in Figure 10.
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Listing 1: Esper Rule template.

SELECT
timeS2S . timestamp as timestamp,
timeS2S . currentHour as currentHour
timeS2S .dateType as dateType,
timeS2S .stopFrom as stopFrom,
timeS2S .stopTo as stopTo,
avg(timeS2S_Win.time) as averageTime,
statisticsS2S .meanTime as meanTime,
statisticsS2S .stdvTime as stdvTime
FROM
timeS2S . std: lastevent () as timeS2S,
timeS2S . std: groupwin (stopFrom ,stopTo).win:length(10)
as timeS2S_Win ,
statisticsS2S .win: keepall () as statsS2S
WHERE
timeS2S .stopFrom = timeS2S_Win .stopFrom and
timeS2S .stopTo = timeS2S_Win.stopTo and
timeS2S . stopFrom = statsS2S.stopFrom and
timeS2S .stopTo = statsS2S .stopTo and
timeS2S . currentHour = statsS2S.currentHour and
timeS2S . dateType = statsS2S.dateType and
avg(timeS2S_Win.time) > statsS2S.meanTime+3xstatsS2S .stdvTime
GROUP BY
timeS2S .stopFrom
timeS2S .stopTo

BUS_ISA

Position = (53.39725, -6.224100000000004)

Bus Anomalyincreased time reguired to go from bus stop 4597 to bus stop 6078. More specifically the average
time reguired to go from one stop to the other currently is 393 sec. While the expected time from the historical
data was 236 sec and Standard Deviation was 1 sec for weekdays at 800

Figure 10: Message generated from the Bus ISA.
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Faulty Sensors: Additionally we set up rules that check whether the buses report noisy
measurements. More specifically we set up rules that inform the traffic operators when one of
the following happen:

e If the buses report wrong bus stop: Fire an alarm if the euclidean distance between the
bus and its reported bus stop is greater than 1500m.

e If the bus moves and at stop field is TRUE: Fire an alarm if the bus reports that it is at
stop and the distance covered from the time that it reported that entered the bus stop
exceeds 30m.

e If the buses report extreme speeds: Fire an alarm if the bus reports that moves with
speed greater than 120km /h.

More Information

Q N. Zygouras, N. Zacheilas, V. Kalogeraki, D. Kinane, and D. Gunopulos, Insights
on a Scalable and Dynamic Traffic Management System, EDBT 2015, pp 653-

664.

3.5 Mobile Phone Data - Outlier Detection

The mobile network intelligent sensor agent (ISA) is responsible for detecting abnormal activity
volumes in a mobile phone network. As part of the INSIGHT system it continuously monitors
the load of all cell towers. To detect these abnormal readings it constructs a model of normal
readings and compares current readings to this. The detection process is split into a batch
analysis and an in-stream speed analysis. With this approach we follows the general idea of the
Lambda architecture as proposed in [MW15]. If the detection process discovers an abnormal
state, an event candidate is reported to the upstream component of the INSIGHT system, the
Round Table [SLM*14]. For an overview of the components see Figure 11.

Input Data Streams and Transport

Available data The data for the mobile phone ISA originates from Vodafone, the second
largest network provider in Germany. The data is obtained from 55.000 mobile cell towers,
covering all places in the country. Every time there is a record of the current load on the specific
cell. Within the network this information is continuously available, but due to technical reasons
it is not preserved for historical analysis in general. We gained access to hourly snapshots of
this information which we use for development of the mobile phone ISA.

Geographical Referencing The mobile phone network consists of individual cells. Each of
the mobile network cells has a identifier (ID). These ID codes can be used to determine the
spatial position of the cell tower. To determine the geographical position we utilize a free web
service, OpenCellld (see [ope]). Given a cell identification, it provides the position in WGS84
[Nat00] with latitude and longitude coordinates. The values are stored in a csv file for further
processing.
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Figure 11: Overview on Mobile Network ISA.

Data Stream Transport and Routing The described input data is a stream of distributed
sensor readings (cell towers are the sensors). For analysis the lambda architecture provides
two layers, i.e. the speed layer and the batch processing layer. Both layers need to be supplied
with the required data. Therefore, we stream the original data into a scalable distributed fault-
tolerant message queuing system, Apache Kafka (see [kaf]). A message with a certain topic
is inserted to Kafka and remains available up to a configured lifetime. For this purpose Kafka
follows the publish subscribe abstraction. Each message can be retrieved by multiple consumer
processes before expiration happens. These properties make Kafka an excellent candidate for
feeding our two processing layers.

The batch processing in the lambda architecture holds a historical set of data relevant
for the application, briefly referred to as All Data. To maintain this set it is required to
periodically transfer new data from the Kafka queue to the batch processing system. A
system capable of this transport is Camus [cam]. The Camus system connects to a Kafka
system and incrementally appends the new data to the target batch storage system.

Batch Processing and Data Storage

In many practical applications the Apache Hadoop [had] system is commonly used for batch
processing. We use the provided components of this open source software for carrying out
tasks in the batch layer. Namely, we use the Hadoop distributed file system (HDFS) for storing
the historical reference data (all data). The detected abnormal events are stored to HDFS as
well as the models of normality. For the derivation of models we use the Hadoop execution
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Figure 12: Model of normality. Different times have different mean values as well as accept-
able corridors.

engine Map Reduce.

Modeling of Normality For outlier detection, we make the following assumptions. The
data has normal state, aberrations thereof occur at random and the distribution of readings
follows a normal distribution. We partition the data according to the following scheme: day of
week (dow): Monday-Sunday and hour of the day (hod): 0-24. For each partition we define
a context of IV values for the calculation of a mean ft4o4 noa and a variance o. This gives us
a day and time sensitive model of normality for each individual cell. In Figure 12 the corridor
acceptable for a normal value is depicted as a grey corridor around the green line of mean
values. Please note, the mean and variance are different for different days and times.

A data item for time ¢ belongs to multiple different contexts. It is duplicated and associated
to each of them. Afterwards, each context is processed by an aggregation operation. Our
implementation uses the Cascading library. Within this aggregation, the corresponding mean
and variance values are calculated in each context. After the statistics are calculated, the
outlier detection checks whether the variance is within the confidence corridor. In case a data
point is outside, a marker for this outlier is created.

Once all the markers have been created, they are sorted and the duration of the events can
be calculated. If the duration exceeds a preset threshold 7T.,; an event candidate is created
and stored to a file in HDFS.

Quality Assurance The Cascading library allows to create Junit tests. A data tuple
can be artificially inserted in a processing flow and results can be compared to an expected
outcome. Testing is applied on different levels. We explicitly test the outcome of functions,
for instance the calculation of statistical values. We insert a sequence of records with a known
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abnormal event to the process chain and check if the generated anomaly is detected and the
upstream event candidate is identified and created.

Query Processing The incoming data is stored in HDFS. We register it as data source in
Lingual. This allows for analytic queries using ANSI SQL. For instance, it is possible to query
aggregate counts per time unit. Also an analysis based on geographical location is possible
using bounding boxes.

Data View The derived events are stored in a csv table. The structure thereof is as follows
(units are given in brackets):

e timestamp (as unix time in ms),
e duration of event (hours),
e maximal deviation (in ¢ units),

e latitude, longitude (geographical coordinates according to WGS84 reference system
[Nat00]).

Pushed to a mysql database for consumption by the GUI.

Real Time Processing |Initially, the input stream is split by cellids to allow parallel process-
ing. As streaming framework we chose the popular Apache Storm [sto] system.

Layout of the Storm Topology Inputis a (replicated) Kafka spout. Connected to detection
bolts using cellid as key. Due to the replication, each of the processing bolts processes a fraction
of cellids. Any state associated to a bolt is volatile in Storm. The speed layer is considered
to be corrected by the results from the batch layer, therefore additional mechanisms to make
the states resilient are skipped in favor of low latency. Detected event candidates are reported
to an output bolt, which creates the connection to the speed view. For the mobile phone ISA
this is achieved using mySQL as data storage and using JDBC to connect the Storm bolt to
the database.

Processing Steps and Methods

1. Stepl: Floating average and mean per cell tower. Monitor 3o corridor.

def online_variance(data):
n=20
mean = 0.0
M2 = 0.0

for x in data:
n=n+1
delta = x - mean
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mean = mean + delta/n
M2 = M2 + delta*x(x - mean)

if n < 2:
return float(’nan’);

else:
return M2 / (n - 1)

The online algorithm as described in [Knu97].

2. Step2: Check the condition that current measurements are within the corresponding
confidence interval.

3. Step3: If the condition is violated, i.e. there is an abnormal reading detected, there
are two possible situations: (1) There is no context open for that cellid. In that case
we create a new context window to store the abnormal sensor events. (2) There is an
open window for the cell at-hand. In this case two cases are distinguished again. If the
current reading is not consecutive in time the context is discarded and a new one is
created. Otherwise, if it is a subsequent reading the context is extend by the current
reading. Further, the number of events in the context is checked against the minimal
even duration threshold. If the threshold is exceeded an event candidate is created and
emitted to the output bolt. Please note, that another event may be created with a
longer duration after reception of an additional abnormal reading for that cell.

Output The events detected by the Mobile Phone ISA are depicted to the user as shown in
Figure 13.

@ 30.07.2015 51.456702 / abnormal_activity=low;
10:15:23 6.758544 times_sigma=2.447290125094878

Figure 13: User interface of the Mobile Phone ISA.

3.6 Identifying Traffic by Twitter Analysis

Twitter is the largest micro-blogging service currently available with more than 316 million
active users per month* (as of July 2015) resulting in a document stream consisting of 500
million tweets per day. Focusing on the city of Dublin, more than 15000 geo-tagged tweets
located in the city of Dublin are posted per day. A small proportion of these tweets often refers
to a traffic incident that takes place in the city. These tweets often originate from Twitter
accounts specialized on reporting traffic incidents such as Livedrive or AARoadWatch or from
users interacting with these services about an incident they just observed. Such tweets are
highly valuable since they provide real-time information and updates about events happening
at Dublin and as a result their identification is crucial. Inspired by this necessity, our Twitter

*https://about.twitter.com/company
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anomaly detection system is able to detect traffic as well as flood related problems in Dublin
using the Twitter stream. Example of event tweets detected by our system are presented in
Table 5.

Data Preprocessing In order to identify meaningful tweets that refer to various incidents a
set of reprocessing steps should be applied on the incoming data. More specifically for every
tweet received from the system:

e We extract the tweet text and convert it to lowercase discarding any non alphanumeric
characters keeping only a small subset of commonly used symbols. Also we remove any
non English word.

e We remove all mentions. However, we keep all hashtags since a hashtag itself provides
valuable information

e We remove English stop-words and terms that appear with a frequency more than a
threshold as common words

e We identify Dublin specific highway abbreviations in the text and we replace them with
predefined tokens (e.g. Abbreviations M50 and N11 will be converted to the tokens
ROAD_M and ROAD_N respectively)

Location Extraction The Tweets retrieved by the Twitter APl often do not contain exact
coordinates or location meta-data. However, before we perform event detection on the incom-
ing data we would like to ensure that even an approximate location could be extracted from
the text. For that reason, we search within the tweets text for location references using an
algorithm described in [DLB13] with the support of a lucene index of Dublin streets, highways
and POls obtained from Open Street Maps®. Using this algorithm we are able to detect textual
references to a place and assign approximate geo-coordinates to the non geo-located tweets.

Feature Extraction After the above pre-processing steps are performed the tweets text
should be converted to an appropriate representation. We decided to follow the bag of words
representation in order to convert the tweets to the vector space model. That is, every
document is represented as a vector representing the appearance of a term. In addition, the
TF-IDF weighting scheme is used instead of using simple term counts since we observed that
it leads to better detection performance.

Anomaly Detection The core component of the Twitter anomaly detection system is a
machine learning supervised classifier. This classifier receives as input a TF-IDF weighted
vector representing a tweet and decides if this tweet is related to a traffic incident or not.
Different classifiers including Support Vector Machines, Logistic Regression and Multinomial
Naive Bayes have been trained. Each of them with different training time requirements and
end performance. The top performing models were the Logistic Regression and the Support
Vector Machine with nearly similar detection accuracy. As an example, the Logistic Regression

Shttps://www.openstreetmap.org
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Id Tweets

1 Knockmarron Hill outbound is very sow following an earlier breakdown
which has been cleared.

2 N11: We have reports of a collision on the N11 inbound just after Lough-
linstown rounddabout

3 Oparaicgallagher There was a collision before J9, now cleared. Those are
the delays.

4 Q@LiveDrive the M50 collision has the N4 inbound backed up to hermitage
golf club. Expect a long wait if you're trying to get on M50 south

5 @dublinbusnews Are you experiencing delays with 16 service? Been wait-
ing ages at stop 278 with next bus @ 3mins for last 15mins.

Table 5: Example tweets that have been retrieved from the Twitter Anomaly detection sys-
tem.

classifier scored a Precision of 0.70 and a Recall of 0.79 under the evaluation phase. The time-
consuming model training has been performed offline. The resulting model, receives data in a
streaming fashion and performs event detection in real-time.

Dataset Description: Every supervised classifier requires a labeled dataset that will be
used for training. In order to face this requirement, for the traffic incident event detection
case the decision was to gather tweets posted from Dublin traffic services as well as tweets
from citizens interacting with these services, more specifically, we gathered tweets from the
LiveDrive, AARoadWatch and GardaTraffic accounts during the years 2013 and 2014 (Services
dataset). In addition, we also gathered mentions of citizens at these accounts during the year
2014 (Interaction dataset). Finally, we gathered a dataset from all the tweets located at the
city of Dublin during the year 2014 (Location dataset). We automatically assigned labels using
the following assumption:

Tweets originating from the Services and the Interaction datasets are assumed to be traffic
related while tweets originating from the Location dataset are assumed irrelevant to traffic.
The final training set consisted of approximately 20000 traffic related tweets and 100000 non
traffic related randomly selected. For the flood event detection case we have a used a manually
labeled data-set from United Kingdom tweets described in [SVGA15]. We found that it could
be applied to the Dublin city too with a descend performance.

System Architecture The Twitter anomaly detection system's architecture, presented also
on figure 14 consists of the following components.

e A Twitter crawler that receives data using the Twitter Filter Stream API®. This stream
contains tweets posted in the area of Dublin, tweets that contain specific keywords (e.g.
M50) and tweets posted from a set of Dublin users obtained from [KLG14].

e A Pre-Processor that receives the data and performs the required pre-processing steps.
Then converts the documents to the appropriate vector space representation.

Shttps://dev.twitter.com/streaming/reference/post/statuses/filter
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e A Lucene’ index that contains a list of the Streets, Highways and POls in the city of
Dublin used in order to perform geo-tagging.

e The text classifier that is responsible for identifying documents that refer to traffic
incidents.

e A MongoDB? database for storing the detected events as well as the raw data.

Filtering, ( A
Vectorization ) 4

Preprocessor HGeotagger }—>

‘;: ] /22

Text
Classifier

g
Flood Events

‘mongo

Figure 14: The architecture of the Twitter event detection system.

3.7 Monitoring Emergencies in Social Media

Task of Twitter ISA In the nation-wide disaster monitoring use-case of INSIGHT, Twitter
data analysis is used to learn about potential disasters. Core tasks in this domain are (i) to
reliably detect potential disasters as early as possible while minimizing false alarm, (ii) to verify
the existence of a disaster, (iii) to predict the characteristics and consequences of a disaster.

The basic assumption is that Twitter user send information on new disasters even before
official channels are informed about a disaster. Uncovering this hidden information will thus
lead to a crucial time advantage for disaster management. A disaster can be considered as
an event, which is described by a number of characteristics: What did happen, where did it
happen, when did it happen, are there any casualties, is there a danger for additional people,
is there material damage, etc. Twitter messages do include event descriptions but usually
describe only one or two aspects of an event. Consequently there is a need for aggregation
of event properties. Moreover tweets include a lot of noise as users can send messages about
virtually any topic, e.g. what they eat for lunch. This information is uncontrolled and difficult
to assimilate. The Twitter ISA has the task to analyze the Twitter data stream in real-time. It
has to identify events in very unstructured text snippets, extract the characteristics of events
and their urgency, follow events over time, and detect the development of new vocabularies.
Detecting Word Senses and their Similarity

A very simple approach to event detection is the search of keywords (e.g. flood, explosion)
in the Twitter message stream. The problem, however, is that many words like flood, explosion,
have several different meanings which vary by context. Flood, for instance may refer to a
(disastrous) overflow of water, or figuratively to a large number or quantity. Words with
identical writing and different meaning are called homonyms. Since the latter sense of flood
frequently appears in tweets we have to disambiguate between the different meanings before

"https://lucene.apache.org/core/
8https://www.mongodb.org/
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Derivative:
change network weights
and embedding such that
score true > score corrupted
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Figure 15: Computing word meanings by embeddings using deep neural networks on AKKA.

(crimo | axplosion | kitled | evacuation |lol | stupid

violence accident rescued bombardment Imao dumb
suicide eruption kidnapped interdiction haha nasty
homicide wreckage attacked invasion hahaha ignorant
burglary  outbreak murdered extermination smh fat
police barrage hanged bombing LOL ugly
corruption fog arrested encirclement  Imfao ratchet
theft explosions captured replenishment hahah dirty
narcotics  iceberg imprisoned inspection hahahaha simple
fraud earthquake fired redeployment Imaoco lame

Figure 16: Word similarity matrix.

we can assume to have some message on a real flood disaster. Moreover language provides
many alternative ways to express a flood, e.g. “the level of river Elbe is rising”.

We implemented a system representing word meanings by embeddings according to
[CWB*11]. It uses a neural network and is trained by contrastive divergence. We designed a
new extension of this system to represent several meanings for each word. This system was
parallelized on a compute-cluster using the Akka® toolkit for distributed and resilient message
driven applications.

The resulting word representations are 50-dimensional real vectors. We may use Euclidean
distance as a similarity measure for representations. The next Figure 16 shows the nearest
neighbors of words (first row) according to their representation similarity. “Accident”, for
instance has “eruption” as nearest neighbor.

http://www.akka.io

D5.2, Version 1.0, 31/08/2015 42 http://www.insight-ict.eu/



INSIGHT FP7-318225

Deriving Semantic Roles between Phrases Semantic role labeling consists of the detec-
tion of the semantic arguments associated with the predicate (verb) of a sentence and of their
classification into their specific roles. For example, given a sentence like " Bank robber kills
police officer with a gun”, the task would be to recognize the verb "to kill" as representing the
predicate, "Bank robber” as representing the killer (agent), "police officer” as representing
the victim (patient), and "a gun” as representing the instrument. This is an important step
towards making sense of the meaning of a sentence. A semantic representation of this sort
is at a higher-level of abstraction than a syntax tree. For instance, the sentence " The police
officer was killed by the bank robber with a gun” has a different syntactic form, but the same
semantic roles.

We used the derived embeddings and implemented a new algorithm for semantic role
labeling for English extending (Collobert et al. 2011). As a basis we used syntactic parse trees
generated by the Stanford parser. In addition we derived semantic representations of phrases
corresponding to specific nodes in the parse tree and used them as input to the classifier
algorithm. The details are published in (Paass Pratap 2014).

Extracting Clusters of Relevant Event Tweets It is very hard for a person to spot
events in Twitter without being overwhelmed by an endless stream of redundant tweets. We
implemented a system to detect novel events as they are published on Twitter. Provided
with a Twitter stream that is initially filtered by a list of seed terms corresponding to known
events (e.g., flood, explosion, overflow, submersion) the system automatically mines the social
stream, to provide a set of headlines that summarize the topics for a number of time slots
of interest. In Twitter there are a few new factors that make the problem more challenging,
e.g., different language styles between Twitter and traditional news media, the fragmented
and possibly ambiguous nature of tweets due to their 140 character length constraint, the
high amount of noise in the user-generated content and the real-time data processing aspect.

The event detection approach has the following ingredients: a combination of aggressive
data preprocessing, hierarchical clustering of tweets, time dependent n-gram and cluster rank-
ing and headlines re-clustering. For data preprocessing we normalize the text to remove URLs,
user mentions and hashtags, as well as digits and other punctuation. Next, we tokenize the
remaining clean text by white space, and remove stop words. In order to prepare the tweet
corpus, in each time window, for each tweet, we first append the user mentions, the hashtags
and the resulting clean text tokens. We check the structure of the resulting tweet, and filter
out tweets that have more than 2 user mentions or more than 2 hashtags, or less than 4
text tokens. These tweets usually do not carry enough news-like content, or are generally
very noisy. Using a language identification system (langid.py) we removed all non-German
tweets. Subsequently we tagged all words with German Part-of-speech tags using Treetagger
(http://www.cis.uni-muenchen.de/ schmid /tools/ TreeTagger/). Thes POS-tags were used as
inputs for a Conditional Random Field to tag the tweet phrases with named entities Person,
Location, Organization. These phrases later got a higher weight in the clustering algorithm.
For each time window from the window tweet corpus, we create a (binary) tweet-term ma-
trix, where we remove user mentions (but keep hashtags), and the vocabulary terms are only
bi-grams and tri-grams, that occur in at least a prescribed number of tweets.

Using this term-matrix we compute a hierarchical clustering employing the fastcluster library
(http://danifold.net/fastcluster.html) that can efficiently deal with thousands of tweets/terms.
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The idea behind tweet clustering is that tweets belonging to the same event will cluster
together, and thus we can consider each cluster as a detected event. We cut the resulting
dendrogram at a prescribed distance threshold which was determined by experiment. Next, we
introduce a modified term weighting, based on the frequency in the time window, as well as
the boosting factor for named entities. For the frequency based weight, we use a formula from
that discounts terms that already occurred in previous time steps emphasizing novel terms.
This adapted measure was used to recompute the clustering to arrive at the final tweet-event
clusters. These were presented in the Twitter GUI.

More Information

Q Paass, G., Pratap, B. (2014) Semantic Role Labeling Using Deep Neural Networks.
Workshop on “Representation Learning” at the European Conference on Ma-

chine Learning and Principles and Practice of Knowledge Discovery in Databases 2014

(ECML/PKDD)
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4 Description of Integration and Visualization

Previous section describe the methods integrated in the INSIGHT system. In the system,
every analysis method is encapsulated in an ISA that communicates to the Round Table. The
Round Table combines the anomalies detected in various data sources (compare D4.1 and
D2.3). The resulting events are presented to the end-user.

The INSIGHT visualization system gives the operator the ability to inspect in real-time
events that take place in the city of Dublin or in Germany. The interface is built as a web
application and is presented on a user friendly web page. The requirement from the end
user, in order to user the interface, is the existence of a web browser on his system. The
interface is divided in layers, whose visibility may be toggled separately, in order to organize
the information provided and to avoid overloading the screen with objects.

The user interface is able to provide visualizations about the raw data, anomalous data
identified by the different Intelligent Sensor Agents (ISA) and events detected by the Round
Table Manager. Finally, the interface provides the ability for the user to send direct feedback
to system about the events displayed on the map.

This section describes the user interface of the INSIGHT system and the crowdsourcing
capabilities of the mobile application.

4.1 INSIGHT Visualization in City-Level Use Case at Dublin

The INSIGHT interface for the city-level use case at Dublin is presented in Figure 17. The
layers are presented at the top-left corner of the screen. The available layers are the following:

e RT-Events: Presents all the Events identified from the Round Table Manager

e ISA-Anomalies: Presents all the anomalies identified by the different Intelligent Sensor
Agent (ISA) processing units.

e Live-Bus: Presents in realtime the current location of delayed buses.

e Live-Scats: Presents all the SCATS sensors reporting increased Degree of Saturation
value during their last measurement.

One or more layers may be active at the same time. When a layer is selected, the traffic
inspector needs to select what kind objects that represent an anomaly or event would like to
see on the map. The available objects include Icons and Polygons. Icons are located exactly
where the events happen while the polygons represent the affected area of the event. Further
information related with the anomaly or the event is provided when the user clicks on an icon
or polygon. According to the type of the incident a different icon is used. Figure 18 shows
the icons used from the RT-Events layer while Figure 19 shows the icons used from the ISA-
Anomalies layer. In the case of the polygons a different color and shading is used in order to
differentiate incidents from different sources.

4.1.1 Online data plots

The INSIGHT system is able to provide to the user data visualizations in the form of line-plots
for the raw data available. In this way, a user after inspecting the data could have a more clear
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RT-Events

Blackrock

Figure 17: The Dublin INSIGHT interface.

image about ambitious alarms and events. This feature is available for the SCATS-ISA and
the Bus-ISA raw data. The system supports auto-complete capabilities to help the user find
the sensors he is looking for and also supports multi-line plots allowing the user to combine
sensors in one plot. Also moving average smoothing is supported in cases where the sensor
data are very noisy. On Figure 20 an example plot for some scats sensors is presented.

4.1.2 Historical tweets

The INSIGHT interface provides the user with the ability to search for historical Tweets. The
user is able to search for tweets during a specific period of interest. In addition, the user is
able to retrieve tweets that have an event probability more than a threshold that he sets in
order to easily access event tweets. Finally, the interface supports keyword based filtering on
the list of tweets returned according to the user criteria. This way, the user can easily check
if event tweets detected by the Twitter-ISA refer to an area of interest.

4.1.3 Replay

The interface supports the ability to reprocess the historical data gathered and then to replay
them with a considerable speedup. When the user decides to replay the INSIGHT analysis for
a specific period he is also able to select to run the different parameters required from the ISA
as well as from the Round Table Manager components. This way one will be able to replay the
analysis in cases of important events, decide on new parameters and finally tune the system.
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Figure 18: The different event icons used from the RT-Events layer.
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(a) Scats (b) Bus (c) Tweets

Figure 19: The different event icons used from the ISA-Anomalies layer.
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Figure 20: Example of multi-plots of some SCATS sensors generated by the INSIGHT inter-
face.
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4.1.4 Trip Planner

The traffic dependent trip computation is provided to the end-user as a websitel®. Similar to
existing trip planners, the user interface allows selection of a start and target location on the
map or in a textbox. Route computation is triggered on pressing the “Plan Your Trip” button,
and incorporates real-time traffic predictions as described in Section 3.1.

* iNSlGHT OpenlripFlanner ,«‘" o
\\
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Figure 21: OpenTripPlanner User Interface. Map view is on the right side including a green

pin which indicates the start location and a red pin that indicates the target. Best viewed in
color.

4.2 INSIGHT Visualization in Nation-Wide Use Case

The INSIGHT interface for the nation-wide use case at BBK is presented in Figure 22. The
layers are presented at the top-right corner of the screen. The available layers are the following:

e Warnings: Presents all events to the user.

e HeatMap: Presents the HeatMap related to the number of warnings per location to the
user.

e Roads: Presents current traffic state to the user.

The navigator box below can be used to center the map at a certain location (in this case
the city of Duisburg). Details of a selected event are shown below that navigator.

0The service utilizes the OptenTripPlanner framework.
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Figure 22: The BBK INSIGHT interface.

To the left a map depicts spatial distribution of the detected warnings and events. Depend-
ing on the zoom of the map events are clustered to prevent cluttering of the map display. The
number of detected events is visually emphasized by a heat-map which is in the background
of the map and supports visual inspection of affected regions.

The boxes Event List and Timeline provide information on the sequence of detected events.
This includes: timestamp, number of detected events per timestamp, location, originating ISA,
details on the event condition.

4.3 CrowdAlert Application

CrowdAlert is a free app, developed from the INSIGHT project and it is designed to enable
users to receive traffic information and unusual events to meet the growing needs of businesses,
residents, commuters and shoppers. CrowdAlert uses real-time data from road sensors, bus
sensors and human crowd sensors.

At the main screen (Figure 23a) the user can observe the events that have been identified
from the INSIGHT system, summarized in Figure 24. However, the user should register/login
using his/her Google account in order to receive the respective rewards for his/her contribu-
tions.

After logging in (Figure 23c), the user can provide real-time information. The app supports
2 functionalities for providing such information:

e Reporting a new event in the user current location using the Report button (Figure 23d)

e Categorize an event identified by the INSIGHT System by clicking on the respective
marker and selecting the type of the event (Figure 23e)
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Figure 23: CrowdAlert app.

The user is also able to:
e Logout using the Logout button

e Pause/resume receiving nearby crowdsourcing tasks using the mute button in his up
right corner

e Navigate to the "Settings” and "Recent Responses’ from the menu button (up right
corner)

Every user can also determine his/her preferences from the settings menu (Figure 23g)
and observe the responses he/she has provided over the last 7 days (Figure 23f).

Finally, users will be receiving geo-located crowdsourcing tasks (Figure 23h) from the
INSIGHT system. The users are prompted to answer the question that refers to the presented
location that provides feedback to the INSIGHT system regarding an ongoing event.
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Figure 24: CrowdAlert Events.
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5 Conclusion

During the third year of the project, the consortium worked together towards all task of WP5.
After reviewing previous requirement elicitation, this document summarizes all developments
regarding the adjustment of Alarming, Prediction and Classification methods to INSIGHTs use
cases. The presented methods are encapsulated in Intelligent Sensor Agents and included in
the INSIGHT system. The visualization of the analysis results and parameters to the end-users
of the INSIGHT system (through the user interface) is also reported in this deliverable.
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