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Abstract

Tra�c routes through a street network are no random walks but contain dependencies.

Such dependencies exist for instance within streets or between neighbouring street-segments.

They can be exploited by applications such as mobile communications, tra�c management

and location based services.

This work tackles the task to model correlations between the locations in space-time trajec-

tories. Due to the nature of spatial data, we have to address the following challenges.First,

it is hard to obtain a reasonably sized data-set of trajectories. Therefore, our �rst task is

to generate a valid data-set which respects real-world tra�c characteristics. For this, we

use the A∗-routing algorithm and extend it to produce routes that correspond to real-world

tra�c intensities. Second, the spatial application has serious demands on the complexity

and performance of the applied methods and algorithms. We apply Bayesian Networks to

achieve a compact representation of the conditional dependencies. We examine algorithms

for structure learning of Bayesian Networks for large data-sets, show the inference and

sampling processes, and �nally apply these models in practice.





v

Acknowledgements

First and foremost, I would like to thank my thesis advisor Christine Körner and my

supervisor Dr. Michael May. I wish to acknowledge their support and guidance throughout

the project. By, numerous scienti�c discussions, and many constructive comments they

have greatly improved this work. This includes in particular, proof-reading the innumerable

drafts of this thesis.

I owe a debt of gratitude to my colleagues at the Fraunhofer Institute IAIS for patiently

answering all my dumb questions concerning the usage of MapInfo and ORACLE. Each

day since I have been here, widened my knowledge in the features of spatial data and

spatial data mining in general

Therefore, I would like to acknowledge Prof. Dr. Werner Dilger not only for equipping

me with the basic knowledge concerning arti�cial intelligence, but rather for raising my

interest in intelligent data analysis and autonomous systems through numerous colourful

creative sputtering talks. He was a very precious person and I am glad for knowing him.



vi



vii

Contents

1 Introduction 1

2 Data Sources and Requisitions 5
2.1 Spatial Data Representation . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Street-Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Frequency Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Bayesian Networks 11
3.1 De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Watersprinkler Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Bayesian Structure Learning . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.1 Scoring Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . 14

3.3.2 PDAGs and equivalence classes of Bayesian Networks . . . . . . . 16

3.3.3 Structure Learning Algorithms . . . . . . . . . . . . . . . . . . . . 17

3.4 Inference Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.1 Enumeration Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.2 Variable Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.3 Complexity of Exact Inference . . . . . . . . . . . . . . . . . . . . 28

3.5 Sampling Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Ancestral Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.2 Rejection Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5.3 Gibbs Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



viii Contents

4 From Trajectories to Correlations 33
4.1 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Test Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.2 The A∗-Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.4 Routing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Structure Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Greedy Hill Climbing . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.2 Screen Based Network Search . . . . . . . . . . . . . . . . . . . . 44

4.3 Sampling and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Conclusion and Future Work 55
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Prospect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A Resulting Bayesian Networks 59

Bibliography 65



ix

List of Figures

1.1 framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 spatial objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 tesselated spatial objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 vectorized spatial objects [Bar95] . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 watersprinkler domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Bayesian Network for the watersprinkler domain . . . . . . . . . . . . . . . 13

3.3 a DAG G and the completed PDAG for Class(G) [Chi02] . . . . . . . . . . 17

3.4 operators which the greedy Hill-Climbing Search uses . . . . . . . . . . . . 18

3.5 adding a query to a Bayesian Network . . . . . . . . . . . . . . . . . . . . 25

3.6 computation tree of the Enumeration Algorithm . . . . . . . . . . . . . . . 27

3.7 topologic ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.8 Markov Blanket of z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 binary path-matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 example of a shortest path . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 example in R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 relative frequencies in the training-set . . . . . . . . . . . . . . . . . . . . . 40

4.5 frequency map for Rodgau . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6 Bayesian Network structure after increasing the sparseness . . . . . . . . . 46

4.7 time requirement for di�erent parameters . . . . . . . . . . . . . . . . . . . 47

4.8 coverage of the street-network by di�erent route-set sizes . . . . . . . . . . 48

4.9 ancestral sampling from a Bayesian Network . . . . . . . . . . . . . . . . . 49

4.10 SBNS sample results after increasing the sparseness . . . . . . . . . . . . . 50

4.11 relative frequency per segment . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.12 probability of co-occurrence decreases with increasing distance . . . . . . . 51



x List of Figures

A.1 Hamburg - routes: 600 - maxfs: 20 - fss: 4 - sup: 4 . . . . . . . . . . . . . 60

A.2 Hamburg - routes: 600 - maxfs: 20 - fss: 4 - sup: 3 . . . . . . . . . . . . . 60

A.3 Hamburg - routes: 600 - maxfs: 20 - fss: 4 - sup: 2 . . . . . . . . . . . . . 61

A.4 Hamburg - routes: 50'000 - maxfs: 20 - fss: 4 - sup: 4 . . . . . . . . . . . . 61

A.5 Rodgau - routes: 1'000 - maxfs: 20 - fss: 4 - sup: 4 . . . . . . . . . . . . . 62

A.6 Rodgau - routes: 5'000 - maxfs: 20 - fss: 4 - sup: 4 . . . . . . . . . . . . . 62

A.7 Rodgau - routes: 5'000 - maxfs: 20 - fss: 4 - sup: 3 . . . . . . . . . . . . . 63



1

Chapter 1

Introduction

A trajectory of a person (i.e. a person's movement through geographic space within a

certain period of time) is not a random walk through the city, but shows spatial dependen-

cies between the passed locations. For example, consider the daily path of a commuter.

Starting at home, it mainly passes a motorway and ends at the place of work. During the

trip it is more likely for the commuter to stay on the motorway than to leave it and enter

one of the villages along the motorway. For this reason the probabilities of co-occurrence

between locations on the motorway are higher than between a location on the motorway

and within a village.

This example shows that the di�erent locations of a region occur not independently within

one trajectory, but correlate. These dependencies are highly valuable for various applica-

tions, for example mobile communications, tra�c management and location based services.

The goal of this diploma thesis is to model spatial dependencies between the various lo-

cations within trajectories. In addition, we provide a sampling method that allows the ad

hoc generation of trajectories respecting a given application context.

Given a huge number of trajectories (for example in form of GPS-logs), the conditional

dependencies between two locations can be determined by simply counting pairwise co-

occurrences within the data. This results in a square matrix with one row and column for

each location. However, in order to obtain dependencies between more than two locations

the matrix has to be extended into higher dimensions. This means to consider not only

pairs of locations, but tuples of various sizes.
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This approach raises two problems. First, the matrix soon becomes huge and hard to

handle in practice. It contains many empty entries as the co-occurrence decreases with the

number of locations. Second, in order to represent the dependencies of all locations in the

matrix the input data has to contain each location in at least one trajectory.

The approach in our thesis to tackle these two problems is to use Bayesian Networks for

a compact representation of conditional dependencies and to generate arti�cial routes to

obtain the necessary amount of data.

Bayesian Networks are graphical models which represent a probability distribution of ran-

dom variables. Variables are modelled by nodes, and edges denote the conditional proba-

bility between the connected variables. Being a generative model, Bayesian Networks can

also be used to draw samples according to the represented probability distribution.

In particular, our task involves the following steps (see �gure 1.1):

• automatic generation of a set of routes,

• adjustment of the route set to satisfy real-world tra�c intensities,

• structure learning of a Bayesian Network that models the correlations of locations

within routes,

• sample generation from the Bayesian Network.

We tailor our work for the estimation of reach in poster-networks. Within the Swiss

Poster Research project [IAI07b] Fraunhofer IAIS develops a general method to evaluate

the contacts and reach of poster-networks in Switzerland. The reach of a poster-network

states the percentage of people who notice at least one poster within a given network in a

speci�ed period of time. A challenge of modelling poster-reach in areas with sparse data

lies in the identi�cation of correlated poster locations. The result of this work can be used

to meet this challenge.

In ongoing con�dential work, Fraunhofer IAIS utilizes spatial sampling algorithms. This
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thesis contributes to the sampling algorithm to include correlations between locations. In

addition, the sampling algorithm can be used for various mobility connected applications.

For example, a provider of location based services can infer the most likely future path

given the movement history of a person.

The thesis has the following structure. In chapter 2 we represent the spatial data sources

and the demands given by the geographic context of the application. Chapter 3 introduces

Bayesian Networks and provides an overview of state of the art algorithms for structure

learning, inference and sampling. In addition it discusses the applicability of the given

algorithms for large datasets. Chapter 4 contains the practical unit of this thesis, where

we generate routes, ensure there conformity with the tra�c intensity, apply the structure

learning algorithm and evaluate the sampling results. We conclude the thesis in chapter 5

with a summary and future work.

Figure 1.1: framework
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Chapter 2

Data Sources and Requisitions

The following chapters utilize large spatio-temporal datasets that are hosted by databases.

Usually, geographical information systems (GIS) are used to process this amount of data.

In this chapter we examine the common modalities of storing spatial data within a database

in general (section 2.1), and describe the available data sources (street-network, trajectories

and frequency map) in detail (section 2.2 to section 2.4).

Furthermore, as a result of the high quantity of data, we depict conditions attached to

feasible solutions of our task (section 2.5).

2.1 Spatial Data Representation

Two distinct approaches are possible to store geometric information about spatial objects

as those in �gure 2.1 [Bar95] [BM98].

The �rst uses a tesselation grid (most often a regular rectangular grid, see �gure 2.2)

and stores rasterized information about the objects comparable with a digital image, and

the second method describes the geometric boundary using vectors and compound vector-

objects (�gure 2.3).
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Figure 2.1: spatial objects

Accumulating multiple objects in di�erent layers, the rasterized data allows a much easier

application of the spatial operators intersection and uni�cation. But, to circumstantiate

relative simple geometric objects (points, lines, polygons and their compounds), vectorized

data needs less memory. It allows also an easy addition of further dimensions to the mostly

two-dimensional table top projection of spatial objects. For raster models this would cause

a transition from pixel- to voxel-space.

Vector models also provide easy mapping of data between various geographic coordinate

systems with di�erent range and precision.

In this thesis, the data sources exert the vector representation. Thereby, spatial objects are

compounds of points, lines, areas and texts. This data structure, as well as advanced spatial

features and methods, are implemented for (the object relational database management

system) ORACLE by Oracle Spatial.

Therefore, one entity within a relation can store a spatial object. Additional data related

to this object is saved within the same relation.
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Figure 2.2: tesselated spatial objects

Figure 2.3: vectorized spatial objects [Bar95]

2.2 Street-Network

Dealing with streets in an arbitrary bounded spatial region, we are only interested in the

streets location and connectivity relations rather than their appearance. This so called

street-network is an preeminent data source for our task. It concedes the usage of algo-

rithms and methods known by graph theory. Thereby, the real-world problem is transferred

into the �eld of discrete mathematics and computer science.

In graph theory, the common method denoting a network structure G is to de�ne a set of

vertices V and a set of directed edges E between pairs of vertices (E ⊆ V ×V). Therewith,
the tuple G = (V , E) provides a su�cient description of G. Routing, search and other
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network related algorithms based on this representation are well studied.

Mapping discrete spatial locations (i.e. streets or smaller street-segments) to the network

vertices V and their connections to the set of edges E , gives the structure of the street-

network representation.

The NAVTAQ-atlas [dsG06], also used by many vehicle navigation systems, is a dataset of

this type. Paths, streets and motorways are described by segments which are vectorized

curves tagged with additional data. This includes for example the corresponding street-

name, the type of street, topological relations of the segments or restrictions for several

means of transport.

Hamburg (as one of the largest cities in Germany) consists of about 35'000 street-segments.

Germany contains a total number of about 6 million segments.

2.3 Trajectories

Trajectories are paths of moving objects. As the introductory example already showed, a

set of tracks contains correlations. Our goal is to model these correlations by a probabilistic

model. For this reason, trajectories are our basic data source.

In physics, trajectories are described by functions x(t) which map any time t to the current

location x of an object.

In our case, the considered space is a �nite set of discrete locations given by the vertices

of the street-network V . Each location x of a trajectory is an element of V (∀x : x ∈ V)

Furthermore, we only consider time discrete locations within a certain period [tstart, tstop].

In result, trajectories through the street-network G = (V , E) are de�ned by the following

�nite set of tuples: {
(t, x(t))|∀t ∈ [tstart, tstop], x(t) ∈ V

}
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The pairs of time and location are stored as an relation within the database.

2.4 Frequency Map

In order to ensure general applicability, the results from the probabilistic data analysis

methods (which are presented in the next chapter) have to correspond with the real world.

The only possible method to comply with this condition is a careful selection of represen-

tative data input.

We do not have su�cient real trajectories to guarantee this concordance. But, developed

by previous Fraunhofer IAIS projects [IAI07a], we have a frequency map. This is a dataset

which enriches the steet-network with real-world tra�c statistics.

It denotes for any segment of the given NAVTEQ street-network G = (V , E) the tra�c

intensity in vehicles per hour. These values are the result of several counts and prudential

reckonings which applies sustainable methods for knowledge discovery and data mining.

Mathematically, the frequency map FM can be formalised by a mapping from the set of

locations V to the set of positive real numbers R+

FM : V 7→ R+

Therewith, it is hosted by the database as an additional property of the street-segments.

2.5 Requirements

In the next chapters, we will discuss and improve algorithms to model and handle the

inner-trajectory correlations in an arbitrary city. Therefore, the methods have to deal with

small as well as large city sizes.

As we aim at a meaningful model for all street segments in the city, the given trajectory set
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has to cover most of the contained street-segments at least once. Hence, we need a large set

of trajectories with a cardinality that is at least as great as the number of street-segments.

It is not unlikely to obtain for a street-network of about 35'000 street-segments (in case of

Hamburg) about 200'000 trajectories. The Bayesian Network structure learning algorithm

and the sampling method have to cope with these problem dimensions.

Furthermore, we want to use the presented framework in practice. Thus, we are interested

in methods with a reasonable runtime.
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Chapter 3

Bayesian Networks

In this chapter we de�ne Bayesian Networks (section 3.1), give an example (section 3.2)

and explain the meaning of structure learning (section 3.3). Finally, we explain inference

(section 3.4) and sampling (section 3.5) from a Bayesian Network. For all these steps,

structure learning, inference and sampling, we give a few algorithms.

3.1 De�nition

Before we de�ne Bayesian Networks, we have to introduce the idea of conditional indepen-

dence of two random variables:

Two random variables A and B are conditional independent with respect to a variable C,
if the property p(A ∧ B|C) = p(A|C) · p(B|C) holds [Pea88].
A Bayesian Network for a probability distribution P is de�ned by a tuple of a graph

G = (V , E ⊆ V × V) and a set Θ containing common probability tables (CPT). It is de-

noted by (G, Θ) [Chi02].

The graph G has to be a directed acyclic graph (DAG) where the vertex set V contains all

random variables. Descendants of one vertex xi are all vertices that are reachable through

a directed path, that is, following the direction of the edges. Nodes that are not descen-

dants are called non-descendants N(xi) of xi. For each vertex xi, xi and N(xi) have to be

conditional independent given xi's parents (parents(xi)) [BH03].
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We de�ne Θ, the set of CPTs, such that for every vertex xi there has to be exactly one

CPT θi which denotes the probability of this variable depending on parents(xi) or, in case

that it does not have any parents, by its marginal probability.

With a Bayesian Network representing a given distribution P we may compute the joint

probability of the variables by the following product:

p(x1, x2, . . . , xn) =
∏

i=1,...,n
n=|V|

p(xi|parents(xi))

3.2 Watersprinkler Example

To show the advantages using a Baysian Network to represent the joint distribution of

some random variables, we present a small network for the water sprinkler domain. In this

domain, we observe four states: the weather is cloudy (C) it rains (R) a water sprinkler is

on (S) and the grass is wet (W) the whole domain is visualized in �gure 3.1.

Figure 3.1: watersprinkler domain

The Bayesian Network which stores the conditional probabilities of the states is given by

�gure 3.2. In this example we only need to save 1 + 2 + 2 + 4 = 9 probabilities instead of
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24 = 16 without using a Bayesian Network.

Figure 3.2: Bayesian Network for the watersprinkler domain

The joint distribution of the four variables p(C, S,R,W ) is given by:

p(C, S,R,W ) = p(C) · p(C|S) · p(R|C, S) · p(W |C, S,R)

When using the conditional independence relationship from the Bayesian Network this

equation simpli�es to:

p(C, S,R, W ) = p(C) · p(C|S) · p(R|S) · p(W |S, R)

Therefore, a Baysian Network is a compact representation of the common distribution of

a set of random variables.

While we need 2n values to store the joint probability table of n variables, we only need

O(n ·2k) values when using a Bayesian Network, where k is the maximum number of parent

nodes for one vertex within the network [RN04].
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3.3 Bayesian Structure Learning

In small domains, a Bayesian Network may be build by the help of a domain-expert who

knows how the variables a�ect each other. He might model the vertex set and edge set

manually or may at least support this process.

For our domain (routes through a network of street-segments) this seems to be hard or

even impossible, therefore our main task is, to �nd a Bayesian Network (a network G =

(V , E) and its parameters Θ) that represents the route matrix best. This problem is

called structure learning problem. We already know the set of vertices V (As each vertex

corresponds to exactly one street segment) of the Bayesian Network and just want to learn

the edges and the corresponding CPTs.

So the Learning algorithm should search in the set Hn of all possible DAGs with a �xed

number of vertices n (which equals the number of segments) for the BN that represents

the data best.

The number |Hn| of possible network structures for n vertices increases super-exponential.

Robinson calculated the number of possible DAGs for di�erent numbers of vertices. For a

number of 18 nodes there already exist about 1.5× 1043 possible DAG structures [Rob77].

He also gave a recursive formula f(n) = |Hn| to compute the number of DAGs for n vertices

that now is often quoted in the following form [CLDS99]:

f(n) =
n∑

i=1

(−1)i+1 n!

(n− i)!i!
2i(n−i)f(n− i)

3.3.1 Scoring Bayesian Networks

To measure the quality of a Bayesian Network we have to de�ne some scoring metrics. It

should not only measure the ability to represent our original probability distribution but

also penalize too complex structures (networks with high incoming-node-degree), as we

want to be able to use the network later on.
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3.3.1.1 Maximum Likelihood

The success of a model M to describe a distribution P is calculated by the maximum

Loglikelihood estimate (MLL) [CLDS99] which is de�ned by the following equation [Stu06].

MLL(G,D) =
n∑

i=1

q(i,G)∑
j=1

r(i)∑
k=1

dijk · ln
dijk

dij

Where G ∈ Hn is one DAG with n vertices, D ∈ DATA(n, d) and 0 · ln(0/∗) ≡ 0 is

accepted. While dij is the number of all entries in database where the parent-con�guration

of node i equals to con�guration 1 ≤ j ≤ q(i, G), dijk is the number of entries in database,

where the parent-con�guration of node i equals to con�guration 1 ≤ j ≤ q(i, G)) and the

state of node i equals the state 1 ≤ k ≤ r(i). q(i,G) is the number of parent con�guration
for a vertex xi. As we deal with boolean variables, q(i,G) equals 2|parents(xi)|. r(i) is the

number of con�gurations for vertex xi this is �xed to 2 when using boolean data.

Maximizing the MLL, the resulting Bayesian Network is not necessarily applicable, as this

loglikelihood does not pay any attention to the possible complex structure. The resulting

network might become too complex (the numbers of parent-nodes is too high) that it

is hardly usable for inference, the Bayesian Infromation Criterion respects this kind of

network complexity, and penalizes it.

3.3.1.2 Bayesian Information Criterion

A search that only maximizes the log-likelihood does not take the complexity of the

Bayesian Network structure into account. Therefore, the resulting network would be hard

to use for inference or sampling, because of the huge computational cost. So, another

criterion for our search has to be the complexity and therefore the usability of the network.

The Bayesian information Criterion (BIC) penalises complex structures by subtracting a

measure for the complexity, the so called dimension of the network [Stu06]:
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DIM(G) =
n∑

i=1

q(i,G) · [r(i)− 1]

Here, r(i) is again the number of con�gurations of a node i and q(i,G) is the number of
parent-con�gurations for node i.

The Bayesian Information Criterion (BIC) is given by this equation [Stu06]:

BIC(G,D) = MLL(G,D)− ln d

2
·DIM(G)

BIC is not the only score for a Bayesian Network, there are also many others like AIC

(Akaike Information Criterion) BDe (Bayesian Dirichlet equivalence [YSW+04]), BDeu

(uniform Bayesian Dirichlet equivalence [SM05]), K2 and many others (see [YC02] [Chi96]

for an overview of the most important scores).

But as BIC is claimed to be consistent [Nea04] and it is used by many applications (BNT

[Mur], HUGIN [Hug], OpenBayes [Gai], Weka [oW]) we also focus on this score.

3.3.2 PDAGs and equivalence classes of Bayesian Networks

Two DAG's G and G ′ are called to be equivalent (G ∼ G ′), if for every Bayesian Network

B = (G, Θ), there exists a Bayesian Network B′ = (G ′, Θ′) such that B and B′ de�ne
the same probability distribution. [Chi02]. A quality criterion g(BN : D) is called score

equivalent if, for every G,G ′ ∈ Hn with G ∼ G ′ and each DATA(N,d) the equation g(Gi :

D) = g(Gj : D) holds. From a statistical point of view this requirement seems natural.

Bayesian Information Criterion is score equivalent. [Stu06]

Given the equivalence of network structures, Chickering introduces a visual representation

of the equivalence classes using partially directed acyclig graphs (PDAGs) [Chi02]. These

are graphs that contain directed and undirected edges but no directed cycles. All edges be-

longing to a v-structure (x→ z, y → z) [Pea88] within a DAG must also be directed in the

corresponding PDAG. As there exist many possible PDAG structures for one equivalence

class Chickering introduces the CPDAG (completed partially directed acyclic graphs) that
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contain an undirected edge for each reversible edge in the equivalence class and a directed

one for every other edge in a DAG. Two CPDAGs are equal if and only if they belong to

the same equivalence class of DAG structures [Chi02]. An example of a CPDAG structure

is given by �gure 3.3.

Figure 3.3: a DAG G and the completed PDAG for Class(G) [Chi02]

Therefore, the structure learning algorithm has to �nd the class of structures that maximize

the score, but should not test multiple elements of one class for optimality.

3.3.3 Structure Learning Algorithms

We formalize the problem of learning the structure of a Bayesian Network BN = (G, Θ) for

a known joint distribution P of n variables given by matrix D, as the optimization problem,

that is, to �nd the speci�c DAG G∗ in the set of all possible DAGs with n vertices Hn that

maximizes the score g(G : D) 7→ R.

G∗ = arg max
G∈Hn

g(G : D)

Learning a Bayesian Network BN = (G, Θ) is proven to be NP-hard for the score-metric

BDe by Chickering [Chi96] and it is assumed also to be NP-hard for any other scoring

function, although not yet proven.
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Here, we give an overview of some structure learning algorithms: the Greedy Hill-Climbing

Algorithm, the Sparse-Candidate Algorithm [FNP99] and the Screen-Based Network Search

[GM04].

3.3.3.1 Greedy Hill-Climbing Algorithm

The �rst structure learning algorithm we present here, the Greedy Hill-Climbing Algorithm

(algorithm 1), structures the set Hn of all possible DAGs with a neighbourhood relation

by introducing a set of Operators {Op(G)|Op : Hn → Hn} that transform one element G
of Hn into another: Op(G).
Initially, the algorithm starts with an arbitrary DAG G(τ=0) ∈ Hn. Thus, applying all

possible operators to this graph G(τ) generates the set of neighbour-structures NB(G(τ)) =

{G ′(τ)|G ′(τ) = Op(G(τ)),∀Op(G(τ))}. The algorithm computes the score g(G : D) for all

elements in this set and continues the search with G(τ :=τ+1) := arg maxG∈NB(G(τ)) g(G : D).

If the score did not improve (g(G(τ+1)) = g(G(τ)) the Hill-Climbing search stops and returns

the current structure G(τ).

The operators the algorithm uses to transform the structures are: REVERSION, DELE-

TION and INSERTION of edges within the DAG such that the DAG properties (to contain

only acyclic, directed edges) are not violated.

Figure 3.4: operators which the greedy Hill-Climbing Search uses

This operator set is complete, because each DAG G1 might be transferred into each other
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DAG G2 by �rst removing all edges from G1 and then adding all edges contained by G2 into

the network, and therefore it is proven that each DAG ∈ Hn can be transferred into each

other.

Algorithm 1 Greedy Hill-Climbing Search

Input: D , Data
g(·) , a scoring metric for Bayesian Networks

Output: BN , Bayesian Network

INITIALISE(τ ← 1, BN (τ) ← RANDOM , BN (0) ← EMPTY ))
while BN (τ) 6= BN (τ−1) do

BN
(τ+1)
cand ← BN (τ) ∪

{
all possible neighbours of BN (τ) in Hn

}
BN (τ+1) ← arg max∀BN∈BN

(τ+1)
cand

g(BN)

τ ← τ + 1
end while

return BN (τ)

Nevertheless, the algorithm only �nds local maxima. To �nd a optimal structure it needs

to be run very often with di�erent initial networks.

Chickering [Chi02] gives a modi�cation of this algorithm that searches in the space of

partially directed acyclig graphs (see section 3.3.2 for an introduction to PDAGs). This

algorithm avoids visiting multiple equivalent structures.

A further speed up is possible, when using a decomposable score. That is a score ful�lling

the following equation: [SM05]

g(G : D) =
n∑

i=1

NODESCORE(xi|parents(xi))

Therewith, the total score of a DAG can be expressed as a sum of scores for each vertex,

where each i-th summand depends only on the parents of the i-th vertex xi within the

DAG structure. The Bayesian Information Criterion is a decomposable score that follows

directly by its de�nition:
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BIC(G,D) = MLL(G,D)− ln d

2
·DIM(G)

=

[
n∑

i=1

q(i,G)∑
j=1

r(i)∑
k=1

dijk · ln
dijk

dij

]
−

[
ln d

2
·

n∑
i=1

q(i,G) · [r(i)− 1]

]

=
n∑

i=1

[
q(i,G)∑
j=1

r(i)∑
k=1

dijk · ln
dijk

dij

− ln d

2
· q(i,G) · [r(i)− 1]

]

=
n∑

i=1

NODESCORE(xi|parents(xi))

The advantage using a decomposable score is the possibility to calculate the score of a

network after applying one of the operators given above by just recomputing the local

score of the vertices a�ected by the transformation. And so, we do not need to compute

the score for the whole DAG in each step.

An open source software using this hill-climbing algorithm is for example the Open Bayes

Python package [Gai]. We used this program with test-distributions of di�erent size and

may con�rm that this algorithm is only applicable for relative small numbers of random-

variables [FNP99]. But, as we want to learn the Bayesian Network with up to 35'000

variables (that is the total number of segments in Hamburg), we have to use another

algorithm.

As the Greedy Hill-Climbing algorithm evaluates all possible changes to the current network

structure in one step (by adding, reversing and deleting edges) and chooses the modi�er

that improves the score of the network maximally, it has to evaluate O(n2) possible changes

[FNP99]. The following algorithms will reduce this cost by bounding the search-space Hn.

3.3.3.2 Sparse Candidate Algorithm

The Sparse Candidate Algorithm [FNP99] (algorithm 2) describes a class of algorithms that

bounds the set Hn containing all possible DAG structures for n variables as it restricts,
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within a �rst step, for each vertex the set of parent-candidates. And then, within a second

step, �nds the optimal network due to this constraints. Both steps are done within a loop

which stops when the score of the network stays equal and the candidate set for each node

also does not change.

While Greedy Hill-Climbing searches in Hn the set of all DAG structures with n vetices,

most of the considered candidates may be omitted in advance, with the following heuristic.

If xi and xj are almost independent, we will not prefer xi to be a parent-node of xj or vice

versa. Friedman assumes that this heuristic is reasonable for most domains. The Sparse

Candidate algorithm will limit the number of possible parents for one vertex, which is n−1

using the greedy hill-climbing algorithm, by a k � n−1 this will restrict the search-space,

and reduce the cost for structure learning.

To decide whether a vertex xj becomes chosen as a parent-candidate for a node xi the

relevance of each xj with j 6= i is measured by the pairwise mutual information I(xi, xj).

The stronger the dependence between the two variables, the higher will be the mutual

information. And in case of independence I(xi, xj) will be zero. Friedman gives a lot of

heuristics increasing the speed of the algorithm, but the basic algorithm containing its

main idea is shown in Algorithm 2.

I(X, Y ) =
∑
x,y

freqD(x, y) · log freqD(x, y)

freqD(x) · freqD(y)

freqD(a) denotes the frequency of a in the dataset D

3.3.3.3 Screen Based Network Search Algorithm

This Algorithm combines the idea of bounding the search space, as shown by the Sparse

Candidate algorithm [FNP99], with the concept of dealing with sparse datasets described

by Chickering and Heckerman [CH99]. It uses the sparseness of the data by generating

frequent item sets, which is a common way to use sparseness of a dataset [CH99] and

computes the support for those frequent item sets.
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Algorithm 2 The Sparse Candidate Algorithm

Input: D , Data
k , maximal number of parent nodes
g(·) , a scoring metric for Bayesian Networks

Output: BN , Bayesian Network

INITIALISE (τ ← 0,BN (τ) ← an initial Bayesian Network)
repeat

τ ← τ + 1
for each xi; i ∈ 1, . . . , n do

SELECT(C
(τ)
i ) with |C(τ)

i | ≤ k based on (D, BN (τ−1))
end for

BUILD(Hn = (V, E)|E =
{
(xj, xi)|i, j, xj ∈ C

(τ)
i

}
)

BN (tau) = (G(τ), Θ(τ))← arg maxG(tau)⊂H(τ) g(BN (τ) : D)
until convergence
return BN (τ)

The basic Screen Based Network Search algorithm (SBNS) is shown in algorithm 3. In a

�rst step, the algorithm enumerates all frequent sets with a support higher than a given

threshold and a length less than a maximum length. For each of these frequent sets a

local Bayesian Network is generated. The edges of all of the local Bayesian Networks

are stored in a so-called edgedump ED that counts the occurrences of each edge within

the network structures. After this �rst step, the edgedump becomes sorted by descending

count value. And in this order each edge of the edgedump is inserted into an initially empty

global Bayesian Network. To respect the DAG properties the edges might be reversed, this

follows from the PDAG equivalence classes of DAG structures (see section 3.3.2).

The algorithm uses the sparseness of the given data to represent the co-occurrence of

variables (and thus positive correlation) within the data. As in sparse data positive corre-

lations are stronger than negative the strongest correlations are not omitted [GM04]. To

model the pairwise negative correlations, mutual edges are added to the �nal Bayesian

Network structure. Such edges can be detected cheaply using a technique from [Mei99].

Meil  showed that the mutual information I(xi, xj) between two variables xi and xj may

be calculated very e�ciently when dealing with discrete binary data. If the two variables

never co-occurred in the dataset the equation simpli�es to [Mei99]:
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I(xi, xj) =
1

d

[
d log d + (d− freqD(xi)− freqD(xj)) log(d− freqD(xi)− freqD(xj))

−(d− freqD(xi)) log(d− freqD(xi))− (d− freqD(xj)) log(d− freqD(xj))
]

freqD(a) denotes the frequency of a in the dataset D
d denotes the total number of entries in the dataset D

The number of signi�cant entities is reduced further by considering only those variables

in the dataset with a support higher than a given threshold. This step is again statistical

justi�ed, because lower support means less mutual information as shown by Meil .

In a last step, some greedy Hill-Climbing can be done in the resulting network structure

to achieve a higher score or a less complex structure.

Using this algorithm, we realized problems (described in the next chapter) due to the

frequent set enumeration, which is very memory and time consuming in case of large max-

imum frequent sets. As presented in the work of Goldenberg [GM05] those problems do

not occur with a maximal frequent set length less than 25. In section 4.3 we describe our

solution to this problem.



24 Bayesian Networks

Algorithm 3 Screen Based Network Search � SBNS

Input: D , Data
K , maximal frequent set size
s , support threshold
g(·) , a scoring metric for Bayesian Networks

Output: BN , Bayesian Network
INITIALISE(DS ← EMPTY , Ed← EMPTY )
for k = 2 to K do

OBTAIN COUNTS for all FREQUENT-SETS FS(D)
for each FSi ∈

{
FS

∣∣ with |FS| = k and COUNT (FS) ≥ s
}
do

DAG∗ ← arg max g(DAG : FSi)
if DAG∗ contains a vertex with k − 1 parents then
STORE DAG∗ in DS

end if

end for

end for

for each DAG ∈ DS do

STORE all edges{source, dest, count + +} in Ed
end for

ORDER Ed in decreasing order of edge counts
for each edge e ∈ Ed do

if e does not form a cycle in BN and e improves g(BN : D) then
ADD e to BN

end if

end for

return BN

3.4 Inference Algorithms

The main task for probabilistic inference systems is to compute the conditional probability

distribution for a set of variables with a given evidence. This is called inference. We

present here some algorithms to answer queries for the probability of an event X given

some evidence e, namely requests of the form p(X|e).
Pearl describes that it is possible to model the query and also constraints as a sub-network

into the Bayesian Network [Pea88] as shown in �gure 3.5, where we model the query

q = p(wet|rainy = TRUE ∨ skrinkler = TRUE) into the previously introduced water-

sprinkler network (see section 3.2) by the help of the auxiliary vertices q′ = (rainy =

TRUE ∨ skrinkler = TRUE) and q = (q′ ∧ wet). The constraint of our query, in this
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case (rainy = TRUE ∨ skrinkler = TRUE), is then represented by adding the evidence

q′ = TRUE to the network.

Figure 3.5: adding a query to a Bayesian Network

3.4.1 Enumeration Algorithm

From the Kolmogorov Axioms of probability follows that the probability of a proposition

A equals to the sum of its atomic events ei (as they are all disjunct by de�nition).

p(A) =
∑

ei∈e(A)

p(ei)

This equation shows that it is also possible with a Bayesian Network to sum the probability

of all atomic events of a proposition in order to get its probability p(X|e).

p(X|e) = α ·
∑

y

p(X, e, y)

Where y enumerates all possible values of the unobserved variables Y , and α normalizes

the probability afterwards. Reconsidering the watersprinkler domain from section 3.2 we

now give the probability p(W = w) for the state the grass is wet (w = TRUE) or not wet

(w = FALSE) by the following sum of probabilites. Recalling, that each computation of

p(X, e, y) is performed by a product itself gives us the following formula.
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p(W = w) =
∑

c

∑
s

∑
r

p(C = c, S = s, R = r, W = w)

=
∑

c

∑
s

∑
r

p(C = c)p(S = s|C = c)p(R = r|C = c)p(W = w|S = s, R = r)

The complexity of such an computation for a network with n boolean variables is in O(n·2n)

[RN04]. We reduce the cost when rewriting the term in the following form to O(2n)

p(W = w) =
∑

c

p(C = c)
∑

s

p(S = s|C = c)
∑

r

p(R = r|C = c)p(W = w|S = s, R = r)

This computation is generalized by the so called enumeration algorithm (algorithm 4),

which also enumerates all atomic events of a proposition and sums their probabilities.

Algorithm 4 Enumeration Inference

Input: X , random variable
e , given evidence for a set of variables E
BN , Bayesian Network for the variables {X} ∪ E ∪ Y

Output: p(X|e)
for each con�guration xi of X do

ei ← e ∪ xi

p(X = xi|e)←ENUMERATE(V ARS(BN ),ei)
end for

return NORMALIZE(p(X|e))

In the computation-tree (visualized by �gure 3.6), we see that some partial sums are

computed multiple times. The next algorithm (variable elimination) solves this problem.
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Algorithm 5 ENUMERATE

Input: X , random variables
e , given evidence for a set of variables E

Output: a real number
if X = ∅ then
return 1.0

end if

Y ← FIRST(X)
if Y is set to y by e then
return p(y|parents(Y )· ENUMERATE(REMAINING(X),e)

else

ey ← e ∪ y
return

∑
y p(y|parents(Y )· ENUMERATE(REMAINING(X),ey)

end if

Figure 3.6: computation tree of the Enumeration Algorithm

3.4.2 Variable Elimination

While the enumeration algorithm computes partial probabilities many times, the variable

elimination procedure keeps these values in memory (algorithm 6). Introducing some tem-

porary variables Ti to keep partial results, the equation from the last section is factorized
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to:

p(W = w) =
∑

c

p(C = c)
∑

s

p(S = s|C = c)
∑

r

p(R = r|C = c)p(W = w|S = s, R = r)

p(W = w) =
∑

c

p(C = c)
∑

s

p(S = s|C = c)
∑

r

p(R = r|C = c)p(W = w|S = s, R = r)︸ ︷︷ ︸
T1(c,w,s)

p(W = w) =
∑

c

p(C = c)
∑

s

p(S = s|C = c)T1(c, w, s)︸ ︷︷ ︸
T2(c,w)

p(W = w) =
∑

c

p(C = c)T2(c, w)

Temporary variables Ti are sums of the probability of some network variables over all

possible con�gurations. In general, temporary variables are eliminated, when they are

constantly 1. This occurs, if its network variables are unimportant for the query when

they are no ancestors of evidence nor query variables.

Algorithm 6 VARIABLE ELIMINATION

Input: X , random variable
e , given evidence for a set of variables E
BN , Bayesian Network for the variables {X} ∪ E ∪ Y

Output: p(X|e)
INITIALIZE(factors← EMPTY )
for each var ∈ BN do

factors←MAKE-FACTOR(var,e)
if var ∈ Y then

factors← SUM-OUT(var,factors)
end if

end for

return NORMALIZE(PRODUCT(factors))

3.4.3 Complexity of Exact Inference

In general, exact inference in Bayesian Networks also contains boolean inference as a spe-

cial case. It therefore has the same complexity as the Enumerate-Satis�ability-Problem
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(#�SAT) of �nding the number of distinct satisfying combinations for a boolean equation.

As this problem is known to be P#�complete [Val79], also exact inference is P#�complete

[BDP03]. But for singly connected networks (also called `polytrees') the time and memory

complexity of exact inference using the variable elimination algorithm is linear in the size

of the network [RN04].

Due to the high complexity of exact inference, we give two algorithms that approximate

the probability p(X|e), in the next section. Namely, the Rejection algorithm (section 3.5.2)

and a Monte-Carlo algorithm (section 3.5.3).

3.5 Sampling Algorithms

Beeing a generative model, we want to use a Bayesian Network BN to draw samples from

the joint distribution P of n variables. As this distribution is encoded by the tuple (G, Θ)

we draw samples respecting the conditional probabilities represented by the network struc-

ture. The process is called sampling. In this section, we present the sampling algorithms:

Ancestral Sampling, Rejection Sampling and Gibbs Sampling.

3.5.1 Ancestral Sampling

Given no evidence for any variables in the Bayesian Network, Ancestral Sampling generates

a sample in the order of the ancestral relation given by the DAG. First, the Bayesian

Network is sorted topologically (see �gure 3.7). Then, the sampling processes the vertices

in this order and samples their state either from there marginal probability distribution (in

case of a source node) or according to the corresponding common probability table (CPT)

(for any other vertex but the sources). This is done for all vertices within the network. The

result is a state of the network that is consistent with the joint distribution and therefore

a sample of this distribution. The algorithm is given as Algorithm 7 [RN04][Bis06].
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Algorithm 7 ANCESTRAL-SAMPLE

Input: BN , Bayesian Network with n vertices
Output: x , a sample with n elements
TOP-SORT(BN)
for j = 1 to n do

xi ← randomly sample from p(Xi|parents(Xi))
end for

return x

Figure 3.7: topologic ordering

3.5.2 Rejection Sampling

The basic idea of the Rejection Sampling algorithm is to use an easy to sample distribution

for sampling from a more complex distribution. The algorithm draws samples from the

easy distribution, and all samples that do not match the more complex distribution become

rejected by the algorithm.

In the easiest case, it might be used to compute probabilities of the type p(x|e). First

the algorithm generates samples from the unconditioned distribution according to the

distribution given by the Bayesian Network. And then it rejects all samples that do not

match with the given evidence e. Afterwards, The probability for p(X = x|e) will be

estimated by counting the samples where X = x in the set of all non rejected samples.

The complete algorithm is given by Algorithm 8 [RN04].
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Algorithm 8 REJECTION-SAMPLE

Input: X , the query
e , evidence
BN , Bayesian Network
N , Number of samples

Output: p(X|e)
for j = 1 to N do

x← ANCESTRAL-SAMPLE(BN)
if x is consistent with e then

N [x]← N [x] + 1
end if

end for

return NORMALIZE(N [x])

3.5.3 Gibbs Sampling

Gibbs Sampling is a Markov Chain Monte Carlo (MCMC) algorithm. Considering the

distribution p(x) = p(x1, x2, . . . , xm) from which we wish to sample and an initial state for

every variable, it chooses a xi randomly or in a given order, in each step. For this xi a value

is drawn from the distribution p(xi|x\i) where x\i denotes x1, . . . , xm with xi omitted. The

complete algorithm is shown as Algorithm 9 [Bis06].

Algorithm 9 GIBBS-SAMPLE

Input: BN , Bayesian Network with n vertices
T , number of sampling-steps

Output: x , a sample with n elements

INITIALISE x(1) = (xi : i = 1, . . . , n)
for τ = 1 to T do

x(τ+1) = x(τ)

CHOOSE (xi; i ∈ 1, . . . , n)

SAMPLE (x
(τ+1)
i ∼ p(xi|

{
x

(τ)
1 , x

(τ)
2 , . . . , x

(τ)
n

}
\ x

(τ)
i ))

end for

return x(T )

The sampling of zi from the joint probability distribution of all variables means in the case

of a Bayesian Network to sample from zi's Markov Blanket, as this blanket consists of the

parent, children and co-parent vertices, it contains all nodes zi may depend on (see �gure

3.8).



32 Bayesian Networks

Figure 3.8: Markov Blanket of z
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Chapter 4

From Trajectories to Correlations

In this chapter we describe the steps of the presented framework in detail, which are:

First, the generation of arti�cial routes through the street-network and their adaption to

real-world tra�c intensities. Second, learning a Bayesian Network which represents the

correlations within these trajectories. Finally, using this network as a generative model for

drawing samples respecting the conditional probabilities.

In section 4.1, we present our routing algorithm that generates routes to learn the dataset

with.

In section 4.2, we apply Bayesian Network structure learning algorithms to our spatio-

temporal domain, as given in the previous chapter. Thereby, we examine and evaluate the

applicability of these algorithms for the intermediate steps of our problem.

Afterwards (in section 4.3), we draw samples from the learned Bayesian Networks according

to our framework. With these samples we evaluate the results of the performed structure

learning algorithm.

Finally, we discuss the extension of the model in case of sparse real trajectories, which are

provided as additional valuable data source (in section 4.4).
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4.1 Data Generation

In this section we automatically create arti�cial routes. Thus, in a �rst approach, we utilize

only the given NAVTEQ street-network G [dsG06]. In a second approach, we also use the

frequency map FM (see section 2.4). The generated sets of routes are the data source for

subsequent Bayesian Network structure learning.

The input for the previously described structure learning algorithms (section 3.3) is a

joint probability distribution P given by a binary matrix. Therefore, the trajectories are

described by a similar matrix D as following. In the dataset D, routes are represented as

binary vectors of size n that equals the total number of street-segments in the focussed

region of interest. Claiming a �xed order of the street-segments, each element in the vector

corresponds to a single street-segment. The vector xj = (xj1, xj2, . . . , xjn) is de�ned by the

characteristic function of the j-th route routej.

D = (xji)
i=1,...,n
j=1,...,d

xji =

{
1 , if segmenti ∈ routej

0 , otherwise

To get a distinct representation of a route, we have to claim each route to be acyclic. An

example of such a dataset D shows �gure 4.1.

The behaviour of the drivers and the necessary algorithms are given in the next sections.

4.1.1 Test Driver

As we generate the routes automatically, we need to de�ne a consistent driver model.

Therefore, we assume that in order to reach a goal-segment segmentg from a start-segment

segments the test-driver chooses one acyclic path path∗s→g(segments → . . . → segmentg)

through the street-network G that minimizes the required travel-time from segments to

segmentg.
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Figure 4.1: binary path-matrix

path∗s→g ∈ arg min
∀ acyclic paths→g ∈ G

time(paths→g)

In comparison with real GPS-trajectories, this driver model is justi�ed. But, it does not

model inter-driver behaviour in times of high tra�c. This is subject to game theory and

psychology. We further assume by using this model that the driver creates a plan before

starting a trip that he cannot change at any time.

The selection of start and goal segment is performed randomly using a uniform distribution

of all segments within the given street-network.

4.1.2 The A∗-Algorithm

To compute time-minimal paths from segments to segmentg, we apply the A∗-Algorithm

(see algorithm 10 [RN04]). This algorithm evaluates each vertex, and therefore each seg-

ment, of a network G = (V , E) with a cost function g(segmenti) that measures the time to

reach this segmenti from the start segment, and a cost estimate h(segmenti) to reach the

goal from the segment. The total cost estimate of a path from start to goal f(segmenti)

passing segmenti then is given by the sum of those measurments:

f(segmenti) = g(segmenti) + h(segmenti)
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In order to �nd the shortest path, it is reliable to start the search with those vertices where

f(segmenti) is minimal. If h(segmenti) never overestimates the cost from segmenti to

the goal, the search algorithm �nds the optimal path [RN04]. As the travel-time for one

street-segment can be estimated by the segment-length divided by the speed-limit for this

segment (which can be looked up according to the street-category stored in the databas),

we de�ne h(segmenti) by the Euclidean distance between the centroids of segmenti and

segmentg divided by the maximal speed-limit in the street-network.

t =
s

v

≥ ‖segmenti → segmentj‖
max v

To store the vertices with its current estimated distance, the algorithm is implemented

using a priority queue Q that provides the functions: insertion of an entry with a certain

key (ADD), remove the entry with the smallest key (REMOVEFIRST) and decrease the

key of an entry (DECREASE-KEY). Very e�cient implementations of such priority queues

are possible with �bonacci heaps [CLRS01]. As we also log within each entry in this queue

from which segment we gained the certain distance (key), we can reconstruct the full path

(RECONSTRUCT-PATH) from source to target after reaching the target segment.

The A∗ algorithm, a so called best �rst search algorithm, �nds an optimal solution that

minimizes the required time from start to goal. Figure 4.2 shows an example of such a

route.

Proof. When the algorithm halts, the cost of the path from segments to segmentg is given

by

f(segmentg) = g(segmentg) + h(segmentg)︸ ︷︷ ︸
0

= g(segmentg)

For any remaining segmenti in the priority queue Q the cost estimation is higher by
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de�nition.

f(segmenti) = g(segmenti) + h(segmenti)∀segmenti ∈ Q

> f(segmentg)

> g(segmentg)

As h(segmenti) never overestimates the cost reaching the goal from segmenti, also f(segmenti)

never overestimates the cost of a path from segments to segmentg which passes segmenti.

Thus, no possible solution is omitted and the search �nds the shortest path.

Algorithm 10 A∗-Algorithm

Input: segments , source-segment
segmentg , goal-segment
G , segment-network
f(·) , estimated cost heuristic

Output: path , cost-minimal route from start to goal given as a list of segments
INITIALISE (Priority Queue Q = (id, key, parentid) ← EMPTY)
Q.ADD(segments, f(segments), NIL)
while Q 6= ∅ do

segmenttest = Q.REMOVEFIRST()
if segmenttest = segmentg then

path = Q.RECONSTRUCT-PATH(segmenttest)
return path
halt

end if

for each segmenti ∈ SUCCESSOR(segmenttest,G) do

if (segmenti, ∗, ∗) /∈ Q then

Q.ADD(segmenti, f(segmenti), segmenttest)
else

Q.DECREASE-KEY(segmenti, f(segmenti), segmenttest)
end if

end for

end while

return ERROR

4.1.3 Properties
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Figure 4.2: example of a shortest path

When generating many shortest paths with uniformly distributed start and goal segments,

we can expect some locations to occur more frequent in the created dataset than others.

To answer the question for there spatial distribution, we �rst give an easy example for a

bounded region in R2 (�gure 4.3). To have discrete locations, we work with a tessellation

grid (in our case of the size 10 times 10). The shortest path between two points in R2 is

(by de�nition) a straight line connecting them. When generating a large set of such routes

(in this case 50'000), and counting the relative frequency of each location in the set of

route afterwards, we see that locations in the centre of the bounded region have a higher

probability to occur within a route than the locations at the boarder.

If we have an arbitrary segment-network, we expect also the locations at the boundary to
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Figure 4.3: example in R2

be less frequent than central locations. The following �gure (�gure 4.4) shows the relative

frequencies, when generating 50'000 random routes in the German city of `Rodgau'.

Compared to the frequency map (�gure 4.5), similarities in the centre are visible. The

streets at the boarder and those that are mainly used by commuters (such as motorways)

di�er a lot in their frequency. For this reason the automatically generated route-set has to

be generated such that it accomplishes the frequency map. The next section describes our

method to cope with this problem.

4.1.4 Routing Algorithm

Using Bayesian Networks for real-world applications, we have to ensure that the represented

probabilities are justi�ed and correspond to real values.

For this reason, the automatically generated route-set (the one, we learn the networks

with in a real-world task), has to be generated such that it accomplishes the frequency

map FM.
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Figure 4.4: relative frequencies in the training-set
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Figure 4.5: frequency map for Rodgau
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Therefore, we developed a generative algorithm that creates a suitable set of acyclic routes

(algorithm 11). It utilizes and extends the already described A∗-algorithm.

Having a measure for the number of vehicles per segment within a certain period, by the

frequency map, the algorithm generates random routes within a loop that stops when all

segments are jammed. During the random route generation it removes already jammed

street-segments from the segment-network and only considers the remaining segments as

possible candidates for further time-minimizing routes.

This re�ects the behaviour of tra�c to choose alternative paths when the network-capacity

is reached at certain edges and is similar to the Ford-Fulkerson algorithm that computes

the maximum �ow in a network from a source to a sink (compare [CLRS01]).

Algorithm 11 Route Generation

Input: G , segment-network
FM , frequency map

Output: R , set of routes satisfying the frequency map
INITIALIZE(R← EMPTY )
while G 6= ∅ do
SELECT(segments, segmentg ∈ G)
R← R∪ A∗(segments, segmentg,G, timeminimal)
G ← G \

{
segmenti|frequency(segmenti,R) = FM(segmenti))

}
end while

return R

This algorithm returns a set R of routes satisfying the frequency map FM.

Proof. Assume the case thatR does not satisfy FM. This means that it exists one segment

segmenti, where frequencies di�er in this two sets.

∃ segmenti s.t. frequency(segmenti, mathcalR) 6= FM(segmenti)

This raises the two cases:

frequency(segmenti, mathcalR) < FM(segmenti) and

frequency(segmenti, mathcalR) > FM(segmenti) .
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As the generated trajectories are acyclic, the second case is in contradiction to the property

that we delete the location in the considered network G in case of

frequency(segmenti, mathcalR) = FM(segmenti) .

The �rst case is in contradiction to the stop criterion in the following way: if

frequency(segmenti, mathcalR) < FM(segmenti)

the loop continues until

frequency(segmenti, mathcalR) = FM(segmenti) .

Therefore the assumption `R does not satisfy FM' leads in any case to a contradiction

and the opposite property R satis�es FM must be true.

As various source/goal distributions are possible, the algorithm is not the only generative

method to create a route-set concurring with the frequency map.

4.2 Structure Learning

Now, that we have a dataset to learn the Bayesian Network from describing the routes, we

apply two of the previously presented structure learning algorithms to obtain a Bayesian

Network that represents the binary distribution given by the dataset best.

4.2.1 Greedy Hill Climbing

In section 3.3.3.1 we presented and discussed the Greedy Hill Climbing algorithm. Here, we

evaluate its usability for the given structure learning task. Thus, we generate a set of 5'000
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routes through the street-network of Rodgau which contains about 2'700 street-segments,

and test the structure learning procedure by this dataset.

We already �gured out that the Greeedy Hill Climbing algorithm has problems dealing

with huge sets of random variables. But, because the computation of the score is the most

time consuming part of the algorithm, also the length of the database is very important

for the algorithm.

However, we hold on the previous constraints (see section 2.5) of our task. Particularly,

we do not partition the focussed region into smaller units. It means in e�ect that we do

not reduce the number of variables.

Anyhow, to perform a test of this structure learning algorithm we have to reduce the input

data to a subset of our route-set. With more than 100 routes the time for computation

endured already for longer than 48 hours (on an intel pentium 4 with 2 GHz and 2 GB

RAM using OpenBayes [Gai], a free python package for working with Bayesian Networks).

Very unlikely, 100 routes are su�cient to represent the conditional dependencies of 2'700

street-segments. So, this algorithm is not suitable for our problem.

4.2.2 Screen Based Network Search

The advantage of the Screen Based Network Search (see section 3.3.3.3) is that it does

not only restrict the search space but also bene�ts from the sparseness of the data. Our

dataset is relatively sparse. In the previously described case of Rodgau, we have up to 120

out of 2'700 segments marked in one row.

Therefore, we evaluate in this section the usability of the algorithm for our domain. As in

the previous section, our routes are a set of 5'000 randomly generated trajectories through

the street-network of Rodgau.

First, we apply the algorithm with the recommended parameters [GM04] (frequent set

length=4 and threshold=4). In this case, the cost for the frequent-set enumeration is very
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high and we do not receive any resulting network structure, because it enumerates all

possible frequent sets with the given parameters which are subsets of larger frequent sets.

Thus, we reduce the set of input routes to a number of 1'000. Furthermore, we apply

di�erent parameters (frequent set length=3 and threshold=6). With these settings, we

obtain a Bayesian Network that hardly spans the city and contains only a few conditional

dependencies.

Possible solution to this problem that enable us to use the SBNS algorithm in a spatio-

temporal context to discover correlations of trajectories under the constraints given in

section 2.5, are

• to bound the length of frequent sets that have a high support within the dataset, or

• to reduce the support of large frequent sets.

An approach for the �rst idea is to bound the length of the routes (and thus, of the possible

frequent sets) in the input dataset by a certain distance. This is a simple way to obtain less

marked entries per data-row in (D) and we achieve higher sparseness within the dataset.

But, only spatially local dependencies can be represented by the network. And bottlenecks

(which are regions of the street-network with a low cut, for example bridges) would compli-

cate the structure learning. Also, the structure learning process would not be independent

from the data generation step.

Hence, we use another method to bound the frequent set length. While bounding the length

of the input-routes clears the ones in the input dataset in a certain order (the temporal

order given by the trajectories, as described in section 2.3), we increase the sparseness by

adding uniformly distributed zeros to the rows such that a maximal number of about 20

to 25 ones per row persist. Spatially, this heuristic adds uniformly distributed gaps to the

routes.

We obtain the sparseness-value of about 25 ones per route from a comparison to Golden-

bergs co-authorship network analysis [GM05], where the value density must be almost the

same, and the algorithm works �ne.
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Utilizing such a method, the most signi�cant co-occurrences (represented by frequent sets

with a very high support) stay within the dataset and also long-distance relations can be

found by the network search algorithm. For the learning process, we use the complete

previously constituted dataset (consisting of 5000 routes), a frequent set support=4 and

try di�erent frequent set sizes.

As we are processing a sample of the given probability distribution, we recompute the

common probability tables for the resulting network structure afterwards with the original

distribution.

With this heuristic and these parameters a Bayesian Network for the routes through

Rodgau can be computed respecting the requisitions in section 2.5. The resulting network

spans the street-network with about 8'000 edges. In order to present a clearer visualiza-

tion, we show in �gure 4.6 an example of such a network that was learned with a reduced

dataset (1'000 routes). The picture shows the meaning of strong dependencies. Thus, most

conditional dependencies are along the main road.

The direction of the arrows do not have the semantic of travel-direction but the semantic

of inference-direction. If we know something about the segment at the base of an arrow

we can infer something about the segment at its other end.

Figure 4.6: Bayesian Network structure after increasing the sparseness

We performed also experiments with other cities. For example we dealt with Hamburg

which consists of about 35'000 segments to prove that our algorithm can still handle this
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amount of variables (see section 2.5). And for Brandenburg an der Havel, a city with about

4'200 segments where we have many GPS-tracks we varied the parameters (cardinality of

the routeset and the support threshold). In �gure 4.8 the coverage of Brandenburg by the

di�erent route-sets is examined. And in �gure 4.7 the required resulting running times in

seconds are plotted.

Therefore, we showed that SBNS can handle the problem of learning a Bayesian Network

with the constraint from section 2.5 when using our heuristic to increase the sparseness of

the given data.

About the parameters we can state that increasing the support threshold increases the

speed of the algorithm but the network achieves lower score values afterwards.

Figure 4.7: time requirement for di�erent parameters
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Figure 4.8: coverage of the street-network by di�erent route-set sizes

4.3 Sampling and Evaluation

As the Bayesian Network will be used to draw samples from the distribution, we evaluate

its quality also by drawing samples. We use the ancestral sampling algorithm (see section

3.5.1). Because the meaning of drawing spatial samples from a Bayesian Networks is not

really intuitive, �gure 4.9 gives an impression of this step and also visualizes the ancestral

sampling procedure.

The samples will respect the conditional probability given by the Bayesian Network.

Proof. Ancestral sampling draws for each variable xi a sample according to its probabil-

ity p(xi|parents(xi)). Because the variables are previously topologically sorted and pro-

cessed in this order, parents(xi) is always instantiated by a sample from the distribution

p(parents(xi)|parents(parents(xi))). Thus, a sample (x1, x2, . . . , xn) is drawn from the

following probability distribution :

p(x1, x2, . . . , xn) =
∏

i=1,...,n

p(xi|parents(xi))

The Bayesian Network describes the same distribution (see section 3.1). Hence, the samples

respect the conditional probabilities given by the network structure.
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Figure 4.9: ancestral sampling from a Bayesian Network

Thus, when the Bayesian Network represents the distribution given by the original routes,

the samples have the same properties as the original routes.

Therefore, we expect to receive connected acyclic paths from one segment to another with

only small perturbances due to the probabilistic character of the algorithm (if the unlikely

case occurs that a segment is never drawn, it will result in a gap in each sample drawn

from the network). Furthermore, when sampling multiple times, we expect the relative

frequency for each street segment to converge to the dataset.

This is investigated by the next �gures, that show results of drawing 870 samples from the
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network we have learned in the previous section using the SBNS with our heuristic. Figure

4.10 shows two samples and �gure 4.11 visualizes the probability for each segment to be

passed by a sample.

Figure 4.10: SBNS sample results after increasing the sparseness

The small perturbances visible in both �gures result from a conceptual error in the sparse-

ness increasing heuristic (described in the previous section). This heuristic prefers spatially

local correlations, and the resulting input to the learning algorithm only contains most sig-

ni�cant co-occurrences, as shown by the following �gure 4.12.

Following the idea of Friedman [FNP99] that scoring functions of parent-candidates-sets
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Figure 4.11: relative frequency per segment

Figure 4.12: probability of co-occurrence decreases with increasing distance



52 From Trajectories to Correlations

which are bounded by the number of variables may not represent higher dimensional XOR

relations, the bias for local dependencies in the dataset causes the network not to rep-

resent XOR relations of wide spread segments in general, when processing frequent sets.

This means for the sampling that segment combinations might be sampled which could

impossible occur within the same acyclic route (marked in �gure 4.10).

That the correlation of the original data is not represented correctly and the network

represents a slightly di�erent probability distribution leads to the small errors of frequency

at some segments within the network (see �gure 4.11).

A solution to get rid of the bias is to reduce the number of ones per row within the

dataset in a di�erent way. Therefore, we suggest to represent each route by multiple

rows. Enumerating all possible combinations of m segments within each route de�nes a

set containing
length(route)!

(length(route)−m)! ·m!

elements, the new distribution can be sampled from. The idea, to represent a single route

by an arbitrary selection of a �xed number of rows (for example exactly one, as above)

containing only a reduced number of m segments of those many possible combinations,

creates a bias for small routes.

But, using an algorithm that scales the support of each frequent set with a constant value

removes the bias. This step is justi�ed, as the most signi�cant correlations (between less

than m segments) are still in the dataset and are then learned and represented by the

resulting Bayesian Network. The networks ability to describe spatial coherences will only

be in�uenced by the value the support is scaled down to and the resulting maximal frequent

set size as a boundary for the direct in�uence per segment.

A further speed up is possible when not enumerating all frequent sets but using only

maximum frequent sets. They can be found by a method shown by Burdick [BCG01] or Lin

and Kedem [LK02]. Then the edge-counter within the edgedump has to be increased in a

di�erent way then just counting the number of Bayesian Networks each edge was contained

in. We suggest adding the lengths faculty of the corresponding maximal frequent set to

the edgedump, as this is directly related (by the above relation) to the number of possible

frequent sets within this maximal frequent set.
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Applying both ideas, we get an improved Screen Based Network Search (algorithm 12),

that �rst scales the sparseness to a certain level and then uses the exact knowledge of the

sparseness by enumerating maximal frequent sets.

Algorithm 12 Modi�ed Screen Based Network Search

Input: D , Data
K , maximal frequent set size
s , support threshold
g(·) , a scoring metric for Bayesian Networks

Output: BN , Bayesian Network
INITIALISE(DS ← EMPTY , Ed← EMPTY )
D′ ← INCREASE-SPARSENESS(D,K)
for each MFSi ∈

{
MFS(D′)

∣∣ with SUPPORT (MFS) ≥ s
}
do

DAG∗ ← arg max g(DAG : MFSi)
STORE DAG∗ in DS

end for

for each DAG ∈ DS do

STORE all edges{source, dest, count+ = |DAG|!} in Ed
end for

ORDER Ed in decreasing order of edge counts
for each edge e ∈ Ed do

if e does not form a cycle in BN and e improves g(BN : D) then
ADD e to BN

end if

end for

return BN

On the whole, the Screen Based Network Search can be applied in some street-networks

of similar size as Rodgau, as presented in section 3.3.3.3 as the sparseness of the dataset

di�ers for various street-network graphs. Using the heuristic given in section 4.2.2 enables

the use of the SBNS-algorithm for any problem with the constraints presented in section

2.5 but also involves slight perturbances.
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4.4 Extension

The previous section described the possibility to cope with the given spatio-temporal learn-

ing problem.

So far, the only data source that justi�es the results is the frequency map. But, denoting

only tra�c intensities per segment, it does not de�ne the distribution of sources and goals

of the routes. Therefore, the smaller the considered region the more sustainable are the

results (and vice versa).

When given sparse trajectories as an additional data source, they can be used to model

the source/goal distribution as follows. We can partition the focussed region into multiple

smaller zip-code regions. The real trajectories express the transition probabilities between

those zip-code regions. Thus, we can learn a Bayesian Network which represents the

probabilities of co-occurring zip-code areas within the real trajectories. Furthermore, we

generate within each of these regions an arti�cial trajectory set that covers each location.

Thereby, multiple Bayesian Networks can be learned for the zip-code areas representing

the co-occurrences of the contained street-segments.

When drawing samples, we �rst draw zip-code areas and then continue drawing in the

corresponding small Bayesian Networks.

Obviously, dependencies at the edge between two neighbouring areas are not modelled

correctly. This can be avoided, when adding a random variable for each adjacent zip-code

area to the small Bayesian Networks which represents the state that a trajectory passes

this neighbour.

This bundle of Bayesian Networks then gives a compact representation of the co-occurrences

within trajectories matching the frequency map and the source/goal distribution given by

real trajectories.
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Chapter 5

Conclusion and Future Work

In this chapter, we summarize the previous work and draw conclusions. Furthermore,

we clarify the relation to applications and Fraunhofer IAIS projects. Finally, we give an

outlook on open tasks and future work.

5.1 Summary

Within the previous chapters, we use Bayesian Networks to model the correlations con-

tained by trajectories through a street-network.

Hence, we generate sets of routes which serve as input data for the learning process.

Considering GPS-logs, these routes are reasonable claimed to minimize the required travel

time for the trip. Thereby, we use the A∗-algorithm to compute a set of trajectories that

satis�es this condition.

To guarantee justi�ed results without having enough real trajectories, we utilize the fre-

quency map. We present a generative routing algorithm which ensures concordance be-

tween this additional data source and the resulting route set. Furthermore, we substantiate

this by a proof.

Afterwards, we examine Bayesian Networks. This includes not only investigation and
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comparison of state of the art algorithms that enable the use of graphical models for a

huge number of variables, but also the development of heuristics to meet the requirements

of the given spatio-temporal domain.

Evaluable information is extracted by drawing samples from the Bayesian Network. There-

fore, we evaluate those samples and the intermediate steps.

As a part of this work, the presented algorithms were implemented.

Despite not yet evaluated, this thesis also explains a method to pro�t from sparse real

trajectories in order to get more realistic results and to answer queries for conditional

probabilities.

Literally, by the given knowledge that John Q. Public was within one track at the petrol

station and at work, with our results, we can predict the probability of also passing the

bakery.

5.2 Applicability

Modelling the conditional dependencies between locations, the hereby presented results are

highly valuable for various applications (i.e. mobile communication, tra�c management

and location based services).

For example, consider the task to predict the reach of a network of advertisement posters.

Reach states the percentage of people who notice at least one of the posters in a speci�ed

period of time. Within the Swiss Poster Research project Fraunhofer IAIS develops a

general method to evaluate poster reaches.

The result of this work can be used to identify correlated poster locations.

Thus, we �rst generate a set of routes in the focussed region which tallies with the frequency

map. Second, we learn the correlations between the tuples of the poster locations by

Bayesian Networks. Finally, using inference algorithms, the Bayesian Network answers
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queries for the conditional probability that a certain poster is passed by a given evidence

of passing some other poster locations.

In case of real trajectories for the region we can even model realistic source/goal distribu-

tions of the routes by simply learning a Bayesian Network denoting the probabilities for

zip-code area transitions of the given trajectories and multiple smaller Bayesian Networks

for segments within the zip-code areas from automatically generated trajectories.

5.3 Prospect

We presented a routing algorithm, which generates routes according to the tra�c intensities

given by the frequency map. Taking this up, future work can investigate the possibilities of

such generative routing algorithms to deal with constraints (i.e. a source/goal distribution)

and to utilize additional data-sources. This may lead to a more realistic set of trajectories.

To enrich the prediction model by a real source/goal distribution, we described the possibil-

ity of learning di�erent layers of Bayesian Networks: one for the zip-code area transitions

(trained by real trajectories) and multiple smaller networks for the segment transitions

within the zip-code areas (trained by generated routes). When dealing with this prob-

lem frequently, Hierarchical Bayesian Networks (HBN) [GF02] are a promising structure

to describe the various conditional dependencies within one model. Hence, the spatial

objects street-network, zip-code areas and the focussed region are part of the following

taxonomy. The region contains the zip-code areas which contain the street-segments. Hav-

ing taxonomic structured data, Hierarchical Bayesian Networks o�er a method to build a

probabilistic structure between arbitrary levels of this hierarchy. The complete model is a

Bayesian Network and can be treated by all presented sampling and inference algorithms.

Furthermore, the processed problem to discover valuable knowledge in a set of trajectories

can be understood to be a pattern recognition or sequence analysis problem.

The usual models for this class of problems are Hidden Markov Models (HMM) [RN04][Bis06],

which extend Bayesian Networks due to the request of processing discrete time slices. When

applied to our domain, these Hidden Markov Models store all transition probabilities be-
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tween pairs of locations. Therefore, they are comparable to a square matrix which stores

the pair-wise probabilities of co-occurrences. Hence, their drawback is also the extensive

memory requirement and poor usability. A further disadvantage of this model is that it

is only capable to describe data precisely which satis�es the Markov assumption [RN04].

Sequences holding this assumption satisfy the property that each contained value only de-

pends on its previous one (They have the context length one.). In general, this Markov

Assumption is unsatis�ed by trajectories.

Nonetheless, the various researches concerning Hidden Markov Models raised new sophisti-

cated models. Namely, the Variable Length Hidden Markov Model (VLHMM) [WZF+06].

It reduces the required memory by discarding weak dependencies and also enables vari-

able lengths of context that are learned automatically. The application of this model will

provide an online prediction model for locations contained by a trajectory.
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Appendix A

Resulting Bayesian Networks

Bayesian Networks can generally be compared by their score and by visualization. As the

route-sets vary in size, the scores of the networks are not comparable, and thus not denoted

here. Therefore, this appendix visualises a selection of the resulting Bayesian Networks.

The meaningful information provided by the following images is the coverage of the street-

network by the Bayesian Networks.

We show results for the work on Hamburg that prove that our approach can process large

cities. Furthermore, we visualize the resulting Bayesian Networks for Rodgau, because

they are mostly discussed in this work.

The utilized Parameters are denoted in the title of the images. For example, the following

line: `Rodgau - routes: 1'000 - maxfs: 20 - fss: 4 - sup: 4' describes:

The used route-set consists of 1'000 routes through Rodgau. The representing binary

matrix has a maximal frequent set length (maxfs) of 20. The length of the considered

frequent sets (fss) is set to 4. And the support (sup) is set to 4.
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Figure A.1: Hamburg - routes: 600 - maxfs: 20 - fss: 4 - sup: 4

Figure A.2: Hamburg - routes: 600 - maxfs: 20 - fss: 4 - sup: 3
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Figure A.3: Hamburg - routes: 600 - maxfs: 20 - fss: 4 - sup: 2

Figure A.4: Hamburg - routes: 50'000 - maxfs: 20 - fss: 4 - sup: 4
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Figure A.5: Rodgau - routes: 1'000 - maxfs: 20 - fss: 4 - sup: 4

Figure A.6: Rodgau - routes: 5'000 - maxfs: 20 - fss: 4 - sup: 4
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Figure A.7: Rodgau - routes: 5'000 - maxfs: 20 - fss: 4 - sup: 3



64



65

Bibliography

[Bar95] N. Bartelme. Geoinformatik. Springer-Verlag Berlin Heidelberg, 1995.

[BCG01] D. Burdick, M. Calimlim, and J. Gehrke. Ma�a: A Maximal Frequent

Itemset Algorithm for Transactional Databases. In Proceedings of the 17th

International Conference on Data Engineering (ICDE'01), pages 443�452. IEEE

Computer Society, 2001.

[BDP03] F. Bacchus, S. Dalmao, and T. Pitassi. Algorithms and Complexity Results

for #sat and Bayesian Inference. In Proceedings of the 44th Annual IEEE

Symposium on Foundations of Computer Science (FOCS '03), pages 340�351.

IEEE Computer Society, 2003.

[BH03] M. R. Berthold and D. J. Hand. Intelligent Data Analysis. Springer, 2003.

[Bis96] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University

Press, 1996.

[Bis06] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science

and Statistics). Springer, 2006.

[BM98] P. A. Burrough and R. A. McDonnell. Principles of Geographical Information

Systems. Oxford University Press, 1998.

[Bun91] W. Buntine. Theory Re�nement on Bayesian Networks. In Proceedings of the

7th Annual Conference on Uncertainty in Arti�cial Intelligence (UAI'91), pages

52�60. Morgan Kaufmann, 1991.



66 Bibliography

[Bur94] R. E. Burkard. Methoden der ganzzahligen Optimierung. Springer, 1994.

[CH99] D. M. Chickering and D. Heckerman. Fast Learning from Sparse Data.

In Proceedings of the 15th Annual Conference on Uncertainty in Arti�cial

Intelligence (UAI'99), pages 109�115. Morgan Kaufmann, 1999.

[Chi96] D. M. Chickering. Learning Bayesian Networks is NP-Complete. In D. Fisher

and H. J. Lenz, editors, Learning from Data: Arti�cial Intelligence and

Statistics V, pages 121�130. Springer-Verlag, 1996.

[Chi02] D. M. Chickering. Learning Equivalence Classes of Bayesian-Network Struc-

tures. J. Mach. Learn. Res., 2:445�498, 2002.

[Chr00] G. Christakos. Modern Spatiotemporal Geostatistics. Oxford University Press,

2000.

[CLDS99] R. G. Cowell, S. L. Lauritzen, A. P. David, and D. J. Spiegelhalter. Probabilistic

Networks and Expert Systems. Springer-Verlag New York, Inc., 1999.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms, Second Edition. MIT Press, 2001.

[Cre93] N. A. C. Cressie. Statistics for Spatial Data. John Wiley & Sons Ltd, 1993.

[dsG06] Digital data service GmbH. Navteq atlas. http://www.dds.ptv.de, 2006.

[FNP99] N. Friedman, I. Nachman, and D. Peér. Learning Bayesian Network Structure

from Massive Datasets: The "Sparse Candidate" Algorithm. In Proceedings of

the 15th Annual Conference on Uncertainty in Arti�cial Intelligence (UAI'99),

pages 206�215. Morgan Kaufmann, 1999.

[Gai] K. Gaitanis. Open Bayes for Python. http://www.openbayes.org.

[GF02] E. Gyftodimos and P. Flach. Hierarchical Bayesian Networks: A Probabilistic

Reasoning Model for Structured Domains. In Proceedings of the ICML-2002

http://www.dds.ptv.de
http://www.openbayes.org


Bibliography 67

Workshop on Development of Representations, pages 23�30. The University of

New South Wales, July 2002.

[GM04] A. Goldenberg and A. W. Moore. Tractable Learning of Large Bayes Net

Structures from Sparse Data. In Proceedings of the twenty-�rst international

conference on Machine learning (ICML'04), pages 44�52. ACM Press, 2004.

[GM05] A. Goldenberg and A. W. Moore. Bayes net graphs to understand co-authorship

networks? In Proceedings of the 3rd international workshop on Link discovery

(LinkKDD'05), pages 1�8. ACM Press, 2005.

[HGC94] D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian Networks:

The Combination of Knowledge and Statistical Data. In KDDWorkshop, pages

85�96. Morgan Kaufmann, 1994.

[Hug] Hugin Expert A/S. Hugin. http://www.hugin.com.

[IAI07a] Fraunhofer IAIS. Faw - Fachverband Auÿenwerbung e.V. Project. http://

www.iais.fraunhofer.de/2235.html?&L=2, 2007.

[IAI07b] Fraunhofer IAIS. Spr+ - Swiss Poster Research Plus Project. http://www.

iais.fraunhofer.de/2231.html?&L=2, 2007.

[LK02] D.-I Lin and Z. M. Kedem. Pincer-Search: An E�cient Algorithm for Discover-

ing the Maximum Frequent Set. IEEE Trans. Knowl. Data Eng., 14(3):553�566,

2002.

[Mei99] M. Meil . An Accelerated Chow and Liu Algorithm: Fitting Tree Distributions

to High-Dimensional Sparse Data. In Proceedings of the Sixteenth International

Conference on Machine Learning (ICML'99), pages 249�257. Morgan Kauf-

mann Publishers Inc., 1999.

[MH01] H. J. Miller and J. Han. Geographic Data Mining and Knowledge Discovery.

Taylor & Francis, Inc., 2001.

http://www.hugin.com
http://www.iais.fraunhofer.de/2235.html?&L=2
http://www.iais.fraunhofer.de/2235.html?&L=2
http://www.iais.fraunhofer.de/2231.html?&L=2
http://www.iais.fraunhofer.de/2231.html?&L=2


68 Bibliography

[Mur] K. Murphy. Bayesian Network Toolbox for Matlab. http://bnt.sourceforge.

net.

[Mur98] K. Murphy. A Brief Introduction to Graphical Models and Bayesian Networks.

http://www.ai.mit.edu/~murphyk/Bayes/bnintro.html, 1998.

[Nea04] R.E. Neapolitan. Learning Bayesian Networks. Pearson Prentice Hall, 2004.

[oW] The University of Waikato. Weka. http://www.cs.waikato.ac.nz/ml/weka.

[Pea88] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann, 1988.

[RN04] S. J. Russell and P. Norvig. Künstliche Intelligenz. Ein moderner Ansatz.

Pearson Studium, 2004.

[Rob77] R. W. Robinson. Counting Unlabeled Acyclic Digraphs. In Proceedings of

the 5th Australian Conference of Combinatorial Mathmatics, pages 28�43.

Springer, 1977.

[RSV01] P. Rigaux, M. Scholl, and Agnès Voisard. Spatial Databases with Application

to GIS. Morgan Kaufmann, 2001.

[Ski98] S. S. Skiena. The Algorithm Design Manual. Springer-Verlag New York, Inc.,

1998.

[SM05] A. Singh and A. W. Moore. Finding Optimal Bayesian Networks by Dynamic

Programming. Technical report, Carnegie Mellon University, June 2005.

[Stu06] M. Studený. An Algebraic Approach to Structural Learning Bayesian Networks.

In Proceedings of the 11th International Conference on Information Processing

and Management of Uncertainty in Knowledge-Based Systems (IPMU'06),

pages 2284�2291. ESIA-Université de Savoie, 2006.

[Val79] L. G. Valiant. The Complexity of Enumeration and Reliability Problems. SIAM

Journal on Computing (SICOMP), 8(3):410�421, 1979.

http://bnt.sourceforge.net
http://bnt.sourceforge.net
http://www.ai.mit.edu/~murphyk/Bayes/bnintro.html
http://www.cs.waikato.ac.nz/ml/weka


Bibliography 69

[WZF+06] Yi Wang, Lizhu Zhou, Jianhua Feng, Jianyong Wang, and Zhi-Qiang Liu. Min-

ing Complex Time-Series Data by Learning Markovian Models. In Proceedings

of the Sixth International Conference on Data Mining (ICDM'06), pages 1136�

1140. IEEE Computer Society, 2006.

[YC02] Shulin Yang and Kuo-Chu Chang. Comparison of Score Metrics for Bayesian

Network Learning. IEEE Transactions on Systems, Man, and Cybernetics, Part

A, 32(3):419�428, 2002.

[YSW+04] J. Yu, V. A. Smith, P. P. Wang, A. J. Hartemink, and E. D. Jarvis. Advances

to Bayesian Network Inference for Generating Causal Networks from Observa-

tional Biological Data. Bioinformatics, 20(18):3594�3603, 2004.


	Introduction
	Data Sources and Requisitions
	 Spatial Data Representation 
	 Street-Network
	 Trajectories
	 Frequency Map
	 Requirements

	Bayesian Networks 
	 Definition 
	 Watersprinkler Example 
	 Bayesian Structure Learning 
	 Scoring Bayesian Networks
	 PDAGs and equivalence classes of Bayesian Networks 
	 Structure Learning Algorithms

	 Inference Algorithms 
	 Enumeration Algorithm
	 Variable Elimination
	 Complexity of Exact Inference

	 Sampling Algorithms 
	 Ancestral Sampling 
	 Rejection Sampling
	 Gibbs Sampling 


	From Trajectories to Correlations 
	 Data Generation 
	 Test Driver
	 The A-Algorithm
	 Properties 
	 Routing Algorithm 

	 Structure Learning 
	 Greedy Hill Climbing
	 Screen Based Network Search 

	 Sampling and Evaluation
	 Extension 

	Conclusion and Future Work 
	 Summary
	 Applicability
	 Prospect

	Resulting Bayesian Networks 
	Bibliography

