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Abstract: Emergence of Bluetooth tracking technology for event monitoring is currently applied to extract individual

pathways, movement patterns or to rank popularity of locations by their visitor quantities. The next steps

are to achieve short term movement predictions, to understand people’s motivations and to come up with

microscopic traffic values. This work proposes a solution for these questions, namely, the combination of

recorded values with a microsimulation. In our presented framework, simulated pedestrians move from one

decision area to the next one in a navigation graph. The graph is automatically generated from the facility

based on the inter-visibility of the exits. Intermediate areas are inserted if needed. With the data obtained

from the Bluetooth scanners, individual pathways of pedestrians are determined. The routing algorithm will

then use those information to adjust the pathways of the agents in the simulation. An accurate reproduction of

pedestrian route choice in a complex facility is expected.

1 INTRODUCTION

Major public events as concerts and soccer

matches which attract thousands or billions of visi-

tors are on one hand a great chance for street mar-

keters and advertisement companies but on the other

hand also a growing financial risk for the organiz-

ers and a safety hazard for the guests themselves,

due to huge expenses and high visitor densities. Un-

derstanding the movement behaviour, identification

of attractors and distractors, determination of wait-

ing times, as well as localization of congestions and

bottle-necks gives insights on visitor preferences and

motivations during a particular event. Knowing such

detailed information on visitor behaviour helps not

just at the next similar event, but is also a location-

based performance indicator for the event itself. Var-

ious locations and attractions can be ranked by their

popularity, safety or frequency. Currently used tech-

nologies to measure these highly needed microscopic

movement values are surveys and video surveillances.

Whereas the first solution (surveys) is expensive and

hardly representative due to the non-random sampling

among all visitors the second one (video surveillance)

depends on weather, brightness and density of the

people and does not seldom require special scaffold-

ings to carry the cameras.

Within this work we propose a novel four stage

approach to monitor microscopic pedestrian move-

ment during events. Our system is cheap, fast de-

ployable and it is independent from the pre-existing

technical infrastructure. The sensor technology we

use, can be applied seamlessly to monitor indoor and

outdoor movement, which offers the chance to track

peoples movement during their whole stay (e.g. start-

ing at the arrival by car, during the event and leav-

ing again by car after the event). We utilize recently

evolved, Bluetooth-scanners (Bruno and Delmastro,

2003; Fuller, 2009) to record people’s presence (step

1). This is basically a mesh of radio frequency sensors

of certain diameters (depending on the used Bluetooth

hardware 10 m, 20m or 100m). Whenever a person

with a Bluetooth enabled device (e.g. a mobile phone

or an intercom) passes the footprint of a sensor, an en-

try is attached to a data-log storing the time-stamp, the

position and a unique id for this person. Each sensor

itself generates pedestrian counts. By use of multiple

sensors, movement patterns and transition times are

recorded. Expected representativeness is about 7 per-

cent of the people (Leitinger et al., 2010). The tech-

nology is already widely used for performance mon-

itoring (Hagemann and Weinzerl, 2008) which just
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depends on macroscopic movement values. To ex-

tend this as well to microscopic features, we adjust

and apply (step 2) an agent simulation to the recorded

values. The analysis returns highly granular values on

pedestrian speeds, duration of stay, direction of move-

ment and pedestrian counts. We apply the proposed

methods during a soccer match at Stade de Costière

in Nı̂mes, the achieved results will be used later on by

the local firefighters and forces.

The remainder of the paper is structured as fol-

lows: Section 2 gives a brief overview on event mon-

itoring and Bluetooth tracking systems. In section 3

our use case and the empirical data collection is de-

scribed. Based on this our novel microscopic mod-

elling method is introduced and explained by means

of the soccer match use case in section 4. The paper

ends with a summary and outlook in section 5.

2 RELATED WORK

Existing indoor tracking technologies are surveys

and video surveillances. Whereas the first solution

(surveys) is expensive and hardly representative due

to the non-random sampling among all visitors, the

second one (video surveillance) depends on weather,

brightness and density of the people and does not sel-

dom require special scaffoldings to carry the cameras.

The need for further robust passive localization tech-

nologies pushed development of sensors that are ca-

pable to monitor people’s movement. First choice is

to track most popular digital gadgets: mobile phones

and intercoms. Analysis of mobile network GSM

(Global System for Mobile Communications) log files

(Giannotti and Pedreschi, 2008) causes strong pri-

vacy objections. Besides, Bluetooth technology is an

emerging technology for monitoring tasks. Recently

evolved Bluetooth based mobility sensors have been

used for event monitoring at the Sziget festival in Bu-

dapest (Leitinger et al., 2010). There, a mesh of six

sensors has been placed at carefully selected places,

having an intermediate distance from 50m to 200m.

This work extracts the route choices and number of

people at particular locations but does not consider

any extraction of microscopic values. Besides event

monitoring, also other successful indoor applications

of Bluetooth scanners are described in literature. In

(Pels et al., 2005) various scanners were placed at

Dutch train stations to record transit travellers. In

(Hagemann and Weinzerl, 2008) not only the tran-

sit travellers are monitored but, by placing sensors

in public busses, also the performance of the public

transport network itself. Accurate locating and fol-

lowing of objects within complex facilities is as well

an important research topic (Hallberg et al., 2003).

So far Bluetooth tracking is used to monitor a

sample of visitors and extract their route choices. In

few works time-geography and movement patterns

are addressed. The next data mining step is to com-

bine recorded values with a microsimulation to (1)

achieve short term movement predictions, (2) to un-

derstand people’s motivations and (3) to come up

with microscopic traffic values. This challenge has

not been addressed in mobility mining and Bluetooth

tracking literature, yet. The next sections describe our

novel approach to achieve these goals.

3 PEDESTRIAN MONITORING

USE CASE

Arbitrary events require a flexible, robust and easy

deployable monitoring technology as they are vary-

ing in space and time. Thus, we decide for recently

evolved Bluetooth-scanners (Fuller, 2009). The par-

ticular real word scenario we focus within this work is

a soccer match at Stade de Costière in Nı̂mes, France.

The stadium has 18.364 seats and expects many visi-

tors since the local football team happened to play in

the second league. We deploy a mesh of 17 sensors

at the stadium in order to monitor people’s behaviour

and route choices. Afterwards, see section 4, we are

going to build a pedestrian model using the collected

data, which represents accurately route choices and

pedestrian behaviour.

For microscopic event monitoring we propose a

four stage process (figure 1). In step 1, Survey De-

sign, basic parameters and decisions (e.g. number of

sensors, sensor placement, sensor form factor and an-

tennas) are made according to the particular applica-

tion needs. Step 2 is the Data Collection phase dur-

ing the event. Afterwards, step 3, Data Preparation

is required. In this step recorded values become tem-

porally aggregated to compensate asynchronous data

entries. During the final step 4, Microscopic Pedes-

trian Modelling the pedestrian simulation, which is

capable of route choice representation (see section 4),

becomes adjusted by the recorded values.

Figure 1: Workflow for microscopic event monitoring.
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3.1 Sensorplacement and Data

Collection

The sensors we use contain multiple Bluetooth anten-

nas which search simultaneously for visible Bluetooth

devices within the sensor footprint. Thus, a complete

scan of the frequency band is accelerated and mov-

ing people are more likely to become detected while

they are crossing the footprint. Each time a Blue-

tooth device (e.g. smartphone or intercom) is seen

a data entry is stored in a file. This log-entry consists

of timestamp, sensor identifier, unique scrambled de-

vice identifier and the signal strength. The need to

scramble the device identifier results from the fact that

Bluetooth sensors collect privacy sensitive data. Ev-

ery Bluetooth chip is identifiable by its unique Media-

Access-Control-address (MAC). Hence, a Bluetooth

device (respectively a person) is detectable (and there-

fore trackable) beyond the spatial-temporal bound-

aries of an event. Hence, our Bluetooth-scanners save

just an anonymized identifier, valid for the time of

the monitored event. To scramble the MAC-address,

we embed the irreversible SHA-256 encryption al-

gorithm (National Institute of Standards and Tech-

nology, 2002) with an event specific random seed

into the sensor software. Thus, privacy of the mon-

itored pedestrians is preserved from the very first data

recording.

We use multiple of these Bluetooth-sensors,

which allow re-identification of the persons at various

locations. This allows recording of transition times,

stay times, movement patterns and movement prefer-

ences. The sensor locations were chosen carefully.

We placed one sensor at each entrance in order to

record visitors at their arrival and leaving of the sta-

dium. Additionally, sensors were place at the shops in

the uppermost floor. In intermediate floor levels, we

placed sensors as well at junctions. Finally, sensors

which monitor people’s presence during the match

were place in the corridors of the tribunes. In total we

placed 17 sensors but before the start of the match,

two sensors were removed by vandalism. The three-

dimensional sensor placement strategy is depicted in

figure 2.

3.2 Data Preparation

Every single sensor runs asynchronous and the max-

imum time for each Bluetooth scan may easily ex-

ceed the theoretical upper bound of 10.24s (Woodings

et al., 2001; Bruno and Delmastro, 2003). One rea-

son is the noisy environment during the event. Thus,

temporal filtering and spatial aggregation is necessary

to get a pure dataset. Duplicate entries are removed

Figure 2: Three-dimensional sensorplacement at Stade de
Costière in Nı̂mes, France.

from the dataset as well as devices which were only

detected once (spot readings). The sensors also record

by chance devices of non-interest (e.g. navigation

systems of passing cars or pedestrians at the border of

the event area). These artifacts are removed by ven-

dor filtering as well as spatial-temporal filtering. Fi-

nally, arbitrary jumps among sensor locations, result-

ing from overlapping sensors are also removed. For

this action, the spatial distances between sensor foot-

prints, time-stamp and duration of the stay are taken

into account to calculate speed and position changes

per time.

After the data has been purified the dataset con-

tains sequences of positions visited per device en-

riched with the time-stamp and stay-time duration.

Thus, for every sensor location quantity of detected

visitors can be determined within a particular time-

interval. Additionally, movement patterns and dy-

namic information on popularity of footprint transi-

tions remained preserved in the data. These empirical

recordings are utilized in the subsequent micro simu-

lation step (section 4) for accurate route choice mod-

elling.

4 MICROSCOPIC PEDESTRIAN

MODELLING

The framework used for describing pedestrian

traffic can be divided in a three-tier structure. One

distinguishes between the strategic, the tactical and

the operational level (Hoogendoorn et al., 2002). The

start and the end trip for each pedestrian is usually

known in advance. At the strategic level pedestrians

choose their self estimated best route, among a collec-

tion of different alternatives. This can be done based
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on experience. Examples could be the global shortest

path or the familiar path to a given destination. Short-

terms decisions are taken at the tactical level, avoiding

jams or switching to a faster route for instance. Basic

rules for motions are defined at the tactical level, these

include accelerating, decelerating, stopping. The dif-

ferent tiers have local interactions with each others.

There are mainly three different classes of models

for pedestrian dynamic at the operational level: cellu-

lar automata models (Blue and Adler, 2001; Kirch-

ner and Schadschneider, 2002), rule based models

(Thompson, 1994; Galea et al., 2004; Korhonen et al.,

2008; Raney and Nagel, 2006) and force based mod-

els (Helbing and Molnár, 1995; Yu et al., 2005). Cel-

lular automata have the advantage of being computa-

tionally efficient, but the resolution of the simulated

geometry is limited by the size of the cells. Force

based models usually operate on a continuous geom-

etry. They need more computations. For more about

the advantages and disadvantages of the individual

models we refer to (Schadschneider et al., 2009).

4.1 Force based model

In our simulation the operational level of the pedes-

trian walking is described by the Generalized Cen-

trifugal Force Model (GCFM) (Chraibi et al., 2011)

which operates in continuous space. In the GCFM

at the operational level pedestrians are described with

ellipses with velocity dependent semi-axes. Faster el-

lipses (pedestrians) need more space in the moving di-

rection. The motion is ruled by the social forces (Hel-

bing and Molnár, 1995; Molnár, 1995). At each simu-

lation step the forces between the pedestrians and the

obstacles (e.g. walls) are computed. Given a pedes-

trian i with coordinates
−→
Ri , the equation of motion is:

mi
−̈→
Ri =

−→
Fi =

−−→

Fdrv
i + ∑

j∈Ni

−−→

F
rep
i j + ∑

w∈Wi

−−→

F
rep
iw , (1)

where
−−→

F
rep
i j denotes the repulsive force from pedes-

trian j acting on pedestrian i,
−−→

F
rep
iw is the repulsive

force emerging from the obstacle w and
−−→

Fdrv
i is a driv-

ing force. mi is the mass of pedestrian i. Ni is the set

of all pedestrians that influences pedestrian i and Wi

the set of walls or borders that acts on pedestrian i.

They are within a certain cut-off radius rc = 2m. This

model has been validated in corridors and bottlenecks

using the fundamental diagram. This model has al-

ready been used to perform simulations of a multipur-

pose arena (Holl and Seyfried, 2009; Seyfried et al.,

2010).

4.2 Pedestrians Route Choice

The route choice for pedestrians can be done using

navigation field (Hartmann, 2010; Guo and Huang,

2011). This approach is spread in the cellular au-

tomata area. Continuous models usually work on a

visibility graph, where the driven force of the simu-

lated agent points towards a node of the graph. The

strategies used are usually the shortest path combined

with the quickest path (Kretz, 2009; Kirik et al., 2009;

Helivaara et al., 2011; Kemloh Wagoum and Seyfried,

2011). These strategies are in most of the case vali-

dated using a visual assessment on some screenshots

taken from the simulation. Some experiments have

been conducted to determine pedestrians route choice

using video surveillance, but only on simple scenar-

ios, reducing the problem to an exit selection prob-

lem (Guo and Huang, 2011; Helivaara et al., 2011;

Lo et al., 2006). This is partially due to the fact that

in complex facilities pedestrians have to be tracked

across many rooms.

Figure 3: Example of a navigation graph generated from a
section of a stadium considering which exits are closed.

In the framework used here, pedestrians move

from one decision area to the next one. A decision

area is a place where the pedestrian decides which

way to go or change the current destination. Ideally

the decision areas are around the exits, which might

be relevant for an evacuation scenario. The navigation

network is automatically generated from the facility

based on the inter-visibility of the exits, intermediates

areas are inserted if needed. Visibility graphs can be

constructed using different algorithms (de Berg et al.,

2008; Höcker et al., 2010). In the case of an evacua-

tion scenario, the navigation graph can be limited to a

visibility graph. A sample navigation graph for a sec-

tion of a stadium is presented in Fig. 3. Pedestrians

Draft



Draft

are routed to the outside in this graph using four algo-

rithms: the local shortest path, the global shortest path

and a combination with the the quickest path (Kem-

loh Wagoum and Seyfried, 2011). This example is

suitable for an evacuation scenario where the pedestri-

ans might prefer the shortest or quickest path to reach

the outside. This approach is insufficient for nor-

mal day life situations, where the individual trips of

pedestrians are subjected to other motivations. Some

pedestrians might choose to go out the shortest way,

whereas others might feel more comfortable walking

along the promenade to get to some other points.

With the data obtained from the Bluetooth-

tracking system, it is possible to assign individual

destination and to calibrate the complete process of

the route choice. The routing algorithm will then use

the provided information to adjust the pathway of the

agents in the simulation. Accurate reproduction of

pedestrian route choice in complex facilities is ex-

pected.

5 CONCLUSION AND FUTURE

WORK

In this contribution Bluetooth tracking was ap-

plied at events to monitor a sample of visitors and ex-

tract their route choices. Individual pathways could

be tracked across many rooms. By sensor-design, the

whole process is at any time privacy preserving.

As part of the spatial knowledge discovery pro-

cess related works, analysing Bluetooth based mobil-

ity data, focussed on time-geography and movement

pattern analysis. Driven by major goals of mobility

data analysis (to achieve short term movement predic-

tions, to understand people’s motivations and to come

up with microscopic traffic values), we proposed a

solution for the next step, namely, the combination

of the recorded values with a microsimulation. The

routing algorithm in the microsimulation will then use

the recorded information to adjust the pathways of

the simulated pedestrians. An accurate reproduction

of pedestrian route choice patterns in complex facili-

ties is expected. As Bluetooth-scanners work seam-

lessly indoors and outdoors, further research needs

to focus on outdoor models and the integration with

existing mobility models. We conclude that use of

Bluetooth-scanners for event monitoring is not just

feasible for pattern extraction but by utilizing our

novel approach also for understanding microscopic

movement behaviour and to expose people’s motiva-

tion.
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Höcker, M., Berkhahn, V., Kneidl, A., Borrmann, A., and
Klein, W. (2010). Graph-based approaches for sim-
ulating pedestrian dynamics in building models. In
8th European Conference on Product & Process Mod-
elling (ECPPM), University College Cork, Cork, Ire-
land. http://zuse.ucc.ie/ECPPM/.

Holl, S. and Seyfried, A. (2009). Hermes - an Evacuation
Assistant for Mass Events. inSiDe, 7(1):60–61.

Hoogendoorn, S. P., Bovy, P., and Daamen, W. (2002). Mi-
croscopic Pedestrian Wayfinding and Dynamics Mod-
elling. In Schreckenberg, M. and Sharma, S., ed-

Draft



Draft

itors, Pedestrian and Evacuation Dynamics, pages
123–155.

Kemloh Wagoum, A. U. and Seyfried, A. (2011). Modelling
dynamic route choice of pedestrians to assess the crit-
icality of building evacuation. arXiv:1103.4080.

Kirchner, A. and Schadschneider, A. (2002). Simulation of
evacuation processes using a bionics-inspired cellular
automaton model for pedestrian dynamics. Physica A,
312:260–276.

Kirik, E. S., Yurgel’yan, T. B., and Krouglov, D. V. (2009).
The Shortest Time and/or the Shortest Path Strategies
in a CA FF Pedestrian Dynamics Model. Journal of
Siberian Federal University. Mathematics & Physics,
2(3):271–278.

Korhonen, T., Hostikka, S., Heliövaara, S., and Ehtamo, H.
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