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Abstract. Pedestrian quantity estimation receives increasing attention
and has important applications, e.g. in location evaluation and risk anal-
ysis. In this work, we focus on pedestrian quantity estimation for event
monitoring. We address the problem (1) how to estimate quantities for
unmeasured locations, and (2) where to place a bounded number of sen-
sors during different phases of a soccer match. Pedestrian movement is
no random walk and therefore characteristic traffic patterns occur in the
data. This work utilizes traffic pattern information and incorporates it
in a Gaussian process regression based approach. The empirical analysis
on real world data collected with Bluetooth tracking technology during
a soccer event at Stade des Costières in Nı̂mes (France) demonstrates
the benefits of our approach.

Keywords: Pedestrian Quantity Estimation, Trajectory, Gaussian Pro-
cess Regression, Graph Kernels, Sensor Placement

1 Introduction

Major public events such as soccer matches, concerts and festivals attract thou-
sands or even millions of visitors. On the one hand this offers interesting busi-
ness opportunities for event organizers, advertisement companies and street mar-
keters. On the other hand it also creates a growing financial risk for the organizers
due to huge expenses, and safety risks for the guests themselves. Understand-
ing movement behaviour and identification of attractors and distractors gives
insights on visitor preferences and motivations during a particular event. This
can help in avoiding risks by better management of visitor flows. Various loca-
tions and attractions can be ranked by their popularity, safety or frequency, and
measures against over-crowding can be taken immediately or for future events.

Sensor technologies that are currently in use to measure people quantities
automatically are surveys, video surveillances, GPS, and Bluetooth scanners.
Whereas the first solution (surveys) is expensive and hardly representative due to
the non-random sampling among all visitors, the second one (video surveillance)
depends on weather, brightness and density of the people and does sometimes
require special scaffoldings to carry the cameras. GPS finally is not available
everywhere, e.g. indoors and in urban canyons. In this paper we perform our tests
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Fig. 1. 3D Sensor Placement at Stade des Costières, Nı̂mes (France) 05/08/2011.

on a Bluetooth tracking dataset collected during a soccer match at the Stade
des Costières, Nı̂mes (France) [1]. The data was collected using 17 Bluetooth
beacons [2] at various locations in the stadium (Figure 1).

This work addresses the question where a fixed number of automatic pedes-
trian quantity sensors (i.e. Bluetooth beacons) is to be located during a mass
event in order to get an adequate estimate on the movement of the visitors within
the site. Our approach addresses the following questions:

– How can pedestrian quantities be estimated from a relatively small number
of empirical measurements?

– At which places should a constrained number of pedestrian quantity sensors
be located?

Often, available data for investigating these questions is limited to a small
number of measurements and some prior knowledge, e.g., floor plan sketches
or knowledge on preferred routes by local domain experts. Incorporating prior
knowledge is thus essential to address the above challenges. However, so far there
are few approaches that explicitly take into account the movement patterns,
although pedestrians generally show some move preferences [3–6], especially in
closed environments, e.g., sport stadiums.

In this paper we address both, pedestrian quantity estimation and sensor
placement in the case where movement patterns are provided as background
knowledge (Section 3) and the acquisition of movement patterns from Bluetooth
observation data (Section 4). The paper is structured as follows. Section 2 dis-
cusses related work and gives an introduction to episodic movement data and its
analysis. In Section 3 we introduce our Bayesian method (Gaussian processes).
Section 4 highlights the application to the real world dataset. We conclude in
Section 5.
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2 Related Work

Bluetooth monitoring has found a number of interesting applications in recent
years. Besides event monitoring, also other successful applications of Bluetooth
tracking technology are described in the literature. In [7] various scanners were
placed at Dutch train stations to record transit travellers. Accurate location
and tracking of objects within complex facilities is another important research
topic [8]. Bluetooth tracking is also used to monitor a sample of visitors [1, 8, 9]
and extract their route choices [1,10]. The work presented in [11] uses Bluetooth
tracking to record people in a public transportation network, whereas [12] gives
a general overview on possibilities using Bluetooth tracking technology. In a few
works time-geography and movement patterns are addressed as well [9, 13].

Bluetooth tracking is based on collecting episodic movement data (EMD) [9].
In GPS-less environments episodic movement data is the major representation
of pedestrian mobility. Differently from outdoor pedestrian quantity estimation,
continuous tracking technologies such as GPS cannot be used in many closed
environments due to the lack of a GPS signal in buildings and/or expensive
deployment of the hardware. Instead, recently developed alternative technologies
such as light beams, video surveillance, and Bluetooth meshes record episodic
movement data or its location-based-aggregate, presence counts, at low expenses.
Episodic movement data is represented by tuples < o, p, t > of moving object
identifier o, discrete location identifier p and a time stamp t. The location-based-
aggregate, presence counts, for time interval ∆t, is also known as number of

visits, quantity or traffic frequency. It is defined as NV (p,∆t) = | < o, p, t >, t ∈
∆t|. The number of moves among two locations pi and pj is similarly defined
as NM(pi, pj , ∆t) = | < o, pi, pj , t >, t ∈ ∆t|. Other prominent examples of
episodic movement data are spatio-temporal activity logs, geo-tagged photos,
cell based tracking data and billing records.

Episodic movement data poses great challenges for existing data mining algo-
rithms based on (linear) interpolation between data points. For example, speed
and movement direction cannot be directly derived from episodic data; trajec-
tories may not be depicted as a continuous line; and densities cannot directly be
computed. The reason is that there are normally unmeasured locations between
two measurements that cannot be reliably inferred by linear or other parametric
interpolation.

Though this data is thus difficult to use for individual movement or path
analysis, it still contains rich information on group movement on a coarser level.
Our approach is to aggregate movement in order to overcome some of the un-
certainties present at the individual level. Deriving the number of objects for
spatio-temporal areas and transitions among them gives interesting insights on
spatio-temporal behavior of moving objects. As a next step to support ana-
lysts, [9] proposes clustering of the spatio-temporal presence and flow situations
(see Figure 3). In this figure the colour shading, which supports a visual un-
derstanding and analysis of the flows, results from Sammon‘s mapping [14]. To
be more precise, the two-dimensional clustering of the flow situations (vector
among all sensors) is mapped on a colour plane. As a result, similar flows get
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similar colours, and difference between flows corresponds to difference between
colours. The different stages of the match are visible, and are subject for data
partition in Section 4.

3 Pedestrian Quantity Estimation with Movement

Patterns

Although pedestrians show systematic behavior and move preferences, espe-
cially in closed environments, e.g., stadiums, concert halls or trade fairs, few
approaches systematically take into account the trajectory patterns for analysis.
However, incorporating prior knowledge on pedestrian movement is essential to
address the two questions posed above (see section 1). Existing traffic volume
estimation methods, e.g., k-nearest neighbour [15, 16] and standard Gaussian
process regression [17], do not take into account this form of expert knowledge
and thus may not effectively provide accurate estimations, e.g. in case of side
corridors.

To estimate the traffic volume at unmeasured locations, we propose in [18] a
nonparametric Bayesian method, Gaussian Processes (GP) with a random-walk
based trajectory kernel. The method explores not only the commonly used infor-
mation known from the literature, e.g. traffic network structures and recorded
presence counts NV at some measurement locations, but also the move prefer-
ences of pedestrians (trajectory patterns) collected from the sensors. As firstly
introduced in [18], we provide here a brief discussion on the GP approach for
quantity estimation and sensor placement. Consider a traffic network G(V,E)
with N vertices and M edges. For some of the edges, we observe the pedes-
trian quantities, denoted as y = {ys := NV (ṽs, ∆t) : s = 1, . . . , S}. Addi-
tionally, we have information about the major pedestrian movement patterns
T = {T1, T2, . . .} over the traffic network, collected from the local experts or the
tracking technology (e.g. Bluetooth). The pedestrian quantity estimation over
traffic networks can be viewed as a link prediction problem, where the predicted
quantities associated with links (vertices) are continuous variables.

In the literature on statistical relational learning [19, 20], a commonly used
GP relational method is to introduce a latent variable to each vertex, and to
model the values of edges as a function of latent variables of the involved ver-
tices, e.g. [21,22]. Although these methods have the advantage that the problem
size remains linear in the size of the vertices, it is difficult to find appropriate
functions to encode the relationship between the variables of vertices and edges
for different applications.

The observed pedestrian quantities (within a time interval ∆t) are condi-
tioned on the latent function values with Gaussian noise ǫi: yi = fi + ǫi, ǫi ∼
N (0, σ2) . As mathematical form and parameters of the function are random and
unknown, fi is also unknown and random. For an infinite number of vertices, the
function values {f1, f2, . . .} can be represented as an infinite dimensional vector.
Within a nonparametric Bayesian framework, we assume that the infinite dimen-
sional random vector follows a Gaussian process (GP) prior with mean function
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m(xi) and covariance function k(xi, xj) [23]. In turn, any finite set of function
values f = {fi : i = 1, ..., N} has a multivariate Gaussian distribution with
mean and covariances computed with the mean and covariance functions of the
GP [23]. Without loss of generality, we assume zero mean so that the GP is com-
pletely specified by the covariance function. Formally, the multivariate Gaussian
prior distribution of the function values f is written as P (f |X) = N (0,K), where
K denotes the N×N covariance matrix, whose ij-th entry is computed in terms
of the covariance function. If there are vertex features x = {x1, ..., xN} available,
e.g., the spatial representation of traffic edges, a typical choice for the covariance
function is the squared exponential kernel with isotropic distance measure.

Since the latent variables f are linked together into an edge graph G, it
is obvious that the covariances are closely related to the network structure: the
variables are highly correlated if they are adjacent in G, and vice versa. Therefore
we can also employ graph kernels, e.g. the regularized Laplacian kernel, as the
covariance functions:

K =
[

β(L+ I/α2)
]−1

, (1)

where α and β are hyperparameters. L denotes the combinatorial Laplacian,
which is computed as L = D−A, where A denotes the adjacency matrix of the
graph G. D is a diagonal matrix with entries di,i =

∑

j Ai,j .
Although graph kernels have some successful applications to public trans-

portation networks [17], there are probably limitations when applying the network-
based kernels to the scenario of closed environments: the pedestrians in a train
station or a shopping mall have favorite or commonly used routes, they are not
randomly distributed on the networks. In a train station, the pedestrian flow
on the main corridor is most likely unrelated to that on the corridors leading
to the offices, even if the corridors are adjacent. To incorporate the information
of the move preferences (trajectory patterns, collected from the local experts or
tracking technology) into the model, we explore a graph kernel inspired with the
diffusion process [24]. Assume that a pedestrian randomly moves on the edge
graph G. From a vertex i he jumps to a vertex j with nk

i,j possible random walks

of length k, where nk
i,j is equal to [Ak]i,j . Intuitively, the similarity of two ver-

tices is related to the number and the length of the random walks between them.
Based on diffusion process, the similarity between vertices vi and vj is defined
as

s(vi, vj) =

[

∞
∑

k=1

λk

k!
Ak

]

ij

, (2)

where 0 ≤ λ ≤ 1 is a hyperparameter. All possible random walks between vi and
vj are taken into account in similarity computation, however the contributions of
longer walks are discounted with a coefficient λk/k!. The similarity matrix is not
always positive semi-definite. To get a valid kernel, the combinatorial Laplacian
is used and the covariance matrix is defined as [24]:

K =

[

∞
∑

k=1

λk

k!
Lk

]

= exp(λL) . (3)
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On a traffic network within closed environment, the pedestrian will move
not randomly, but with respect to a set of trajectory patterns and subpatterns
denoted as sequences of vertices, e.g.,







T1 = v1 → v3 → v5 → v6,
T2 = v2 → v3 → v4,

. . .







. (4)

Each trajectory pattern Tℓ can also be represented as an adjacency matrix in
which Âi,j = 1 iff vi → vj ∈ Tℓ or vi ← vj ∈ Tℓ. The subpatterns are sub-
sequences of the trajectories. For example, the subpatterns of T1 are {v1 →
v3, v3 → v5, v5 → v6, v1 → v3 → v5, v3 → v5 → v6}. Given a set of trajectory
patterns T = {T1, T2, . . .}, a random walk is valid and can be counted in similar-
ity computation, if and only if all steps in the walk belong to T and subpatterns
of T . Thus we have

ŝ(vi, vj) =

[

∞
∑

k=1

λk

k!
Âk

]

ij

, K̂ =

[

∞
∑

k=1

λk

k!
L̂k

]

= exp(λL̂)

Â =
∑

ℓ

Âℓ, L̂ = D̂ − Â, (5)

where D̂ is a diagonal matrix with entries d̂i,i =
∑

j Âi,j .

For pedestrian quantities fu at unmeasured locations u, the predictive distri-
bution can be computed as follows. Based on the property of GP, the observed
and unobserved quantities (y, fu)

T follows a Gaussian distribution

[

y

fu

]

∼ N

(

0,

[

K̂u,u + σ2I K̂u,u

K̂u,u K̂u,u

])

, (6)

where K̂u,u is the corresponding entries of K̂ between the unmeasured vertices

u and measured ones u. K̂u,u, K̂u,u, and K̂u,u are defined equivalently. I is an
identity matrix of size |u|. Finally the conditional distribution of the unobserved
pedestrian quantities is still Gaussian with the meanm and the covariance matrix
Σ:

m = K̂u,u(K̂u,u + σ2I )−1 y

Σ = K̂u,u − K̂u,u(K̂u,u + σ2I )−1 K̂u,u .

Besides pedestrian quantity estimation, incorporating trajectory patterns
also enables effectively finding sensor placements that are most informative for
traffic estimation on the whole network. To identify the most informative loca-
tions I, we employ the exploration strategy, maximizing mutual information [25]

argmax
I⊂V

H(V\I)−H(V\I | I) . (7)
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It is equal to finding a set of vertices I which maximally reduces the entropy of
the traffic at the unmeasured locations V\I. Since the entropy and the condi-
tional entropy of Gaussian variables can be completely specified with covariances,
the selection procedure is only based on covariances of vertices, and does not
involve any pedestrian quantity observations. To solve the optimization problem,
we employ a poly-time approximate method [25]. In particular, starting from an
empty set I = ∅, each vertex is selected with the criterion:

v∗ ← argmax
v∈V\I

Hǫ(v | I)−Hǫ(v | I) , (8)

where I denotes the vertex set V\(I ∪ v). Hǫ(x|Z) := H(x|Z ′) denotes an
approximation of the entropy H(x|Z), where any element z in Z ′ ⊂ Z satisfies
the constraint that the covariance between z and x is larger than a small value
ǫ. Within the GP framework, the approximate entropy Hǫ(x|Z) is computed as

Hǫ(x | Z) =
1

2
ln 2πeσ2

x|Z′

σ2

x|Z′ = K̂x,x − K̂T
x,Z′K̂−1

Z′,Z′K̂x,Z′ . (9)

The term K̂x,Z′ is the corresponding entries of K̂ between the vertex x and a set

of vertices Z ′. K̂x,x and K̂Z′,Z′ are defined equivalently. Given the informative
trajectory pattern kernel, the pedestrian quantity observations at the vertices se-
lected with the criterion (8) can well estimate the situation of the whole network.
Refer to [18] for more details.

4 Real World Application

In this section, we test our approach on a dataset collected through Bluetooth
tracking technology [1]. The analysis is inspired by the workflow presented in [13].
Instead of applying two phases we conduct our experiment in three consecutive
phases.

– The field study phase is performed during (1) survey design and (2) data
collection.

– The second visual analysis phase is conducted within the (3) data prepara-
tion, aggregation and visual analysis.

– In the knowledge discovery phase we conduct the (4) data mining step.

Next, each of the steps is described and experiments to the previously described
sensor placement strategy are performed.

4.1 Field Study Phase

For data collection a mesh of 17 Bluetooth sensors has been deployed within a
soccer stadium (Stade des Costières, Nı̂mes at France) during a soccer match on
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05.08.2011. The three-dimensional sensor placement is depicted in Figure 1. All
Bluetooth enabled devices (e.g. smartphones or intercoms) that pass at one of
the sensors (more precisely its footprint) trigger the creation of a datalog entry
consisting of the timestamp, the sensor identifier (which denotes the position),
the radio signal strength and a hashed identifier for this particular device [26].

The range of the sensors is approximately 15 meters, thus there remain un-
observed regions in the stadium as well as overlapping areas. Whenever a Blue-
tooth enabled (i.e. visible) mobile device traverses multiple sensors, it becomes
re-detected. In this way, transition times as well as movement patterns can be
reconstructed. However, the recorded data is episodic (see Section 2 for specifics
on Episodic Movement Data) as it provides uncertainties on continuity, accuracy
as well as coverage [9].

We recorded 47,589 data points from 553 different devices at 17 distinct
locations. The average number of distinct visited sensor locations is 4.37, the
median number is 2. The recorded movements have an average duration of 3
hours and 25 minutes. In total, about 14 percent of the visitors, 553 of 3898
(this official visitor number does not contain the people which worked there),
have been recorded during the period of the match; thus we expect the dataset
to be large enough to allow inferences from the sample to the whole population
even for less frequent flows.

4.2 Visual Analysis Phase

The recorded Bluetooth tracking dataset contains sequence movement patterns,
which can for example be extracted using the Teiresias algorithm [27], which was
firstly applied to episodic movement data in [28]. Application of the algorithm
reveals that the most frequent pattern with more than one location starts at the
main entrance and ends at a tribune (depicted in Figure 2A). The movement
in the stadium thus is not a random walk but aims at a target. These individ-
ual movement preferences cause correlations among the sensor readings. Next,
we visually explore the correlations contained in the soccer dataset [1]. The vi-
sual analysis of movement dependencies among discrete regions is subject of our
previous work presented in [29, 29]. There, the contained dependencies are rep-
resented by a Spatial Bayesian Network which connects the different regions by
directed edges and associated conditional probability tables. In result, queries
for co-visits of spatial regions given arbitrary (positive or negative) evidences
can be answered. Next, we apply this method [30] to the presented dataset and
study the contained movement preferences in detail (Figure 2).

For visualization of the three-dimensional dependencies, we created a Voronoi
Dirichlet tessellation of a three-dimensional stadium model. Materials to the re-
sulting geometries (colour and opacity) are assigned according to the probability
distribution computed by the Spatial Bayesian Network. Figure 2 depicts the re-
sults of the Spatial Bayesian Network for four different queries. Red colours
indicate a high visit probability; blue colours indicate a low probability. The
yellow arrows in the picture mark the points of positive evidence. The picture A
(in the upper-left corner) depicts the probability distribution given the evidence
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that the sensor at the ground floor (sensor 34 for comparison with Figure 1) has
been visited. It is remarkable that the probability on this side of the stadium is
high and low in most of the other parts. The places in the other tribunes (at the
bottom of the pictures) that possess a relative high probability as well as the
VIP rooms and thus visited by the catering staff and prominent visitors from all
tribunes after the match ended.

In the next step we examine the impact of the staff and prominent guests by
change of evidence to a restricted entry within the Spatial Bayesian Network.
Results are depicted in picture B. All paths that have been used by the catering
crew and safety deputies are inked in red which denotes a high probability of
movement. The shops possess a relatively high probability. They were located
in the uppermost floor of the two towers in the left side of the picture and also
in the VIP lounges. Safety deputies helped us during data collection, thus it can
be seen to the right that they visited sensor location three (top of the upper left
tower, compare Figure 2) in order to check its presence. In the bottom of Figure 2
we combine multiple points of evidence within the query. To the left (picture C)
is a visualization of the combined probability of the visitors at the entry to the
major tribune and to the VIP entry. The visitors selected by this query distribute
among the major tribune and within the VIP rooms. By further addition of
evidence at sensor location three, the places considered so far reach their highest
conditional probability. Most likely this untypical movement pattern depicted in
picture D was our movement for maintenance of the sensors. The tribune to
the left shows a very low probability as it could not be traversed. The tribune
on the right was open for traversing before the match began. Thus, our visual
analysis reflects these circumstances and helps to understand movement behavior
contained in the dataset.

After visual analysis of the recorded spatial movement correlations our fur-
ther visual analysis focuses on the temporal analysis and the preparation of the
dataset for the data mining (i.e. sensor placement step). Since episodic movement
data contains uncertainties on individual movement, the proposed approach in [9]

Fig. 2. Visual representation of the spatial correlations in the soccer dataset, yellow
arrow denotes the evidence of the query
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(a) Clustering of presence situations over time

(b) Clustering of flow situations over time

Fig. 3. Temporal analysis of presence and flow situations.

is the spatio-temporal aggregation of presence and moves. This results in pres-
ence and flow situations which denote for a time interval ∆t the total number of
visits for each discrete location as well as the total number of moves among pairs
of locations. Thus, in contrast to the existing workflow for Bluetooth tracking
data analysis, the soccer dataset [1] is divided into three consecutive time inter-
vals (arrival, match, departure) derived from the clustering of presence and flows
(Figure 3). In this picture the lines represent the number of persons per scanner
(Figure 3a) or the numbers of persons per link among two locations (Figure 3b).
The background colouring of the Figure utilizes Sammons mapping [14] and was
discussed in Section 2. Based on the achieved visual analysis of the flow data (de-
picted in Figure 3) the time-stamps for splitting are (14:00, 20:00, 21:45, 22:00).
These time intervals correspond to the three different consecutive phases of the
match: arrival of the visitors, match and the departure after the match. Note
that in Figure 3b (which analyses the moves of the visitors) even the break of
the match is visible. Movement of the stadium visitors differs in each of these
time spans from its successive time interval (indicated by different colours in
Figure 3b). During the match there is very low movement of the visitors. Thus,
we perform our sensor placement experiments for the safety critical phases of
arrival and departure.
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(a) arrival dataset

(b) departure dataset

Fig. 4. MAE for random (grey boxplots) and trajectory pattern kernel based sensor
placement (black dots) for different number of sensors

4.3 Knowledge Discovery Phase

The Gaussian process based sensor placement algorithm (Section 3) is applied
to the two previously separated datasets (arrival and departure of the visitors).
Thus, the recorded movement sequences of the visitors (studied in Figure 2)
are considered as movement patterns. All of the recorded patterns are treated
equally (we remove duplicates) without any weighting. The recorded counts of

visits per sensor are subject for quantity estimation. This is also an important
difference from our work presented in [18] where we model counts of flows.

The quantity estimation is performed with different numbers of sensors, start-
ing from 17 up to 2. In each test we apply our sensor placement algorithm among
the predefined locations chosen in the given dataset. The performance of the
placement is then compared to random sensor placement (run 35 times each).
The quantity estimation error is measured in mean absolute error MAE. Fig-
ure 4 depicts the performance for different numbers of sensors. The placement
of 17 sensors (to the left) equals to the case were all 17 previously placed sensors
(contained in the dataset) are used. In the next step, one of the sensors is omit-
ted. The grey boxplot denotes performance for its random selection, the black
dot the performance of our kernel based placement strategy.
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The tests show that when omitting up to 6 of the applied sensors (35%) in
the sensor mesh, our placement still outperforms random placement and has an
acceptable absolute prediction error of 80 persons (2% of the total number of
3,898 visitors1).

5 Conclusion and Summary

The paper addressed the visitor quantity estimation in an event monitoring
scenario under constraints (i.e., a bounded number of sensors). Thus we tackled
the following two challenges (1) pedestrian quantity estimation from a relatively
small number of empirical measurements, and (2) placement of the constrained
number of quantity sensors. We proposed a novel method to determine where a
fixed number of automatic pedestrian quantity sensors is to be located during a
mass event in order to get an adequate estimate on the presence of the visitors
within the site. Note that we considered here counts of presence, instead of counts
of moves, which is subject to [18].

Our proposed method incorporates trajectory patterns for automatic sensor
placement and quantity estimation. Real world experiments at a soccer stadium
dataset show that our method holds potential for automatically determined sen-
sor number reduction.

Future work may focus on reduction of communication costs among the sen-
sor network, inclusion of mobile sensors (e.g. mobile Bluetooth sensors [31]) and
creation of a dynamic pedestrian model.
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