
Predictive Trip Planning – Smart Routing in Smart Cities

Thomas Liebig
TU Dortmund University

Artificial Intelligence Group
Dortmund, Germany
thomas.liebig@tu-

dortmund.de

Nico Piatkowski
TU Dortmund University

Artificial Intelligence Group
Dortmund, Germany

nico.piatkowski@tu-
dortmund.de

Christian Bockermann
TU Dortmund University

Artificial Intelligence Group
Dortmund, Germany

christian.bockermann@tu-
dortmund.de

Katharina Morik
TU Dortmund University

Artificial Intelligence Group
Dortmund, Germany

katharina.morik@tu-
dortmund.de

ABSTRACT
Smart route planning gathers increasing interest as cities
become crowded and jammed. We present a system for in-
dividual trip planning that incorporates future traffic haz-
ards in routing. Future traffic conditions are computed by a
Spatio-Temporal Random Field based on a stream of sensor
readings. In addition, our approach estimates traffic flow
in areas with low sensor coverage using a Gaussian Process
Regression. The conditioning of spatial regression on in-
termediate predictions of a discrete probabilistic graphical
model allows to incorporate historical data, streamed online
data and a rich dependency structure at the same time. We
demonstrate the system and test model assumptions with a
real-world use-case from Dublin city, Ireland.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Multivariate statistics,
Stochastic processes, Time series analysis; H.4.2 [Information
Systems Applications]: Types of Systems—Logistics; J.7
[Computer in Other Systems]: Real time

1. INTRODUCTION
The incentive for the creation of smart cities is the increase

of living quality and performance of the city. This is often
accompanied with various mobile phone apps or web services
to bring new services to the people of a city – advertising
events, spreading city information or guiding people to their
destinations by providing smart trip planning based on the
city’s spirit.
With the unpleasant trend of growing congestion in mod-

ern urban areas, smart route planing becomes an essential

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

service in the smart city development. Existing trip plan-
ning systems consider current traffic hazards and historical
speed profiles which are recorded by personal position traces
and mobile phone network data [27]. The traffic message
channel (TMC) is a radio service that transmits hazards to
personal navigation devices. Due to technical limitation it
can just address locations which are situated foremost at
inter-urban highways [15]. Besides the limited spatial gran-
ularity of TMC and its broadcast of past traffic states, TMC
is a phasing out technology as the advent of digital radio su-
persedes submission of RDS-TMC messages via VHF/FM
[32].

The fast moving traffic situations in urban areas demand
for a thorough routing that incorporates as fresh informa-
tion about the city’s infrastructure as possible. This work
presents an approach to situation dependent trip planning
that incorporates real time information gained from smart
city sensors and combines this data with a model for esti-
mating future traffic situations for route calculation. The
proposed system provides three components: (1) an interac-
tive web-based user interfaces that is based on the popular
OpenTripPlanner project [22]. The web interface allows for
users to specify start and target location and triggers the
route planning and provides a REST-ful service (REpresen-
tation State Transfer, introduced in [26]) interface to inte-
grate such services into mobile applications. (2) A real-time
backend engine, based on the streams framework [6], which
provides data stream processing for various types of data.
We provide input adapters for streams to read and process
SCATS data [1] emitted from automatic traffic loops (city
sensors). This allows us to maintain an up-to-date view of
the city’s current traffic state. (3) A sophisticated dynamic
traffic model that is integrated into the backend stream en-
gine and which provides traffic flow estimation at unobserved
locations at future times.

The combination of these components is a trip planner
that incorporates the latest traffic state information as well
as using a fine-grained future traffic flow estimation for ur-
ban trip planning. We test our trip planner in a use case
scenario in the city of Dublin. The city is amongst the
most jammed cities in Europe [2]. The city holds about
630 SCATS sensors, each providing current traffic flow and

www.thomas-liebig.eu
BibTeX
@inproceedings{Liebig/etal/2014,
author = {Thomas Liebig and Nico Piatkowski and Christian Bockermann and Katharina Morik},
title = {Predictive Trip Planning - Smart Routing in Smart Cities},
booktitle = {Proceedings of the Workshops of the EDBT/ICDT 2014 Joint Conference (EDBT/ICDT 2014), Athens, Greece, March 28, 2014},
year = {2014},
publisher = {CEUR-WS.org},
volume = {1133},
pages = {331--338}
}

liet
Maschinengeschriebenen Text
BibTeX :

vehicle speed at the sensor location.
The paper is structured as follows. In the second section

we describe the general architecture of the presented system
regarding the input and output of the trip planner, the data
analysis and the stream processing connecting middleware.
The third section deals with the application of our proposed
trip planner to a use case in Dublin, Ireland. In the fourth
section we provide a discussion of the work together with
future directions. The fifth section presents related work.

2. GENERAL ARCHITECTURE
We give an overview of the system developed to address

the veracity, velocity and sparsity problems of urban traf-
fic management. The system has been developed as part
of the INSIGHT project. This section describes the input
and output of the system, the individual components that
perform the data analysis, and the stream processing con-
necting middleware.

2.1 System Components
As already noted in the introduction, we built the sys-

tem aiming real time streaming capabilities. Based on the
streams framework, the core engine is a data flow graph that
models the data stream processing of the incoming SCATS
data. This graph can easily be defined by means of the
streams XML configuration language and features the inte-
gration of custom components directly into the data flow
graph. As can be seen in Figure 1, this data flow graph
contains the SCATS data source as well as several nodes
that represent preprocessing operations. A crucial compo-
nent within that stream processing is our Spatio-Temporal
Random Field (STRF) implementation1, which is used in
combination with the sensor readings to provide a model for
traffic flow prediction.
With the service layer API provided by streams, we export

access to the traffic prediction model to the OpenTripPlan-
ner component. The OpenTripPlanner provides the inter-
face to let the user specify queries for route planning. Based
on a given query (v, w) with a starting location v and a des-
tination w, it computes the optimal route v → p0 . . . pk → w
based on traffic costs. Here we plug in a cost-model for the
routing that is based on the traffic flow estimation and the
current city infrastructure status. This cost-model is queried
by OpenTripPlanner using the service layer API.

2.2 Traffic Model
The key component of our system is the traffic model. It

combines two machine learning methods in a novel way, in
order to achieve traffic flow predictions for nearly arbitrary
locations and points in time. This traffic model addresses
multiple facets of the trip planning problem:

• sparsity of stationary sensor readings among the city,

• velocity of real-time traffic readings and computation,
and

• veracity of future traffic flow predictions.

Based on a stream of observed sensor measurements, a Spatio-
Temporal Random Field [25] estimates the future sensor val-
ues, whereas values for non-sensor locations are estimated

1The C++ implementation of STRF and the JNI interface
can be found at: http://sfb876.tu-dortmund.de/strf

Figure 1: A general overview of the components of
the predictive trip planning system. The real time
engine continuously manages a up-to-date state of
the city infrastructure and exports the traffic esti-
mator as prediction service to the OpenTripPlanner.
Best viewed in color.

Gt+1

Gt

Gt−1

Figure 2: Simple spatio-temporal graph. The under-
lying spatio graph G0 is a simple circle of 6 nodes.

using Gaussian Processes [20]. To the best of the authors
knowledge, streamed STRF+GP prediction has not been
considered until now and is therefore a novel method for
traffic modelling. A comparable method is proposed in the
same workshop [29] that combines a linear dynamic system
with Gaussian Processes for near-time forecasts. Comparing
these two models in terms of precision and speed is open for
future work.

Spatio-Temporal Random Field for Flow Prediction
In order to model the temporal dynamics of the traffic flow
as measured by the SCATS sensors (Figure 5), a Spatio-
Temporal Random Field is constructed. The intuition be-
hind STRF is based on sequential probabilistic graphical
models, also known as linear chains, which are popular in
the natural language processing community. There, consec-
utive words or corresponding word features are connected
to a sequence of labels that reflects an underlying domain
of interest like entities or part of speech tags. If a sen-
sor network, represented by a spatial graph G0 = (V0, E0),
is considered that generates measurements over space and

time, it is appealing to identify the joint measurement of all
sensors with a single word in a sentence and connect those
structures to form a temporal chain G1 − G2 − · · · − GT .
Each part Gt = (Vt, Et) of the temporal chain replicates
the given spatial graph G0, which represents the underly-
ing physical placement of sensors, i.e., the spatial struc-
ture of random variables that does not change over time.
The parts are connected by a set of spatio-temporal edges
Et−1;t ⊂ Vt−1×Vt for t = 2, . . . , T and E0;1 = ∅, that repre-
sent dependencies between adjacent snapshot graphs Gt−1

and Gt, assuming a Markov property among snapshots, so
that Et;t+h = ∅ whenever h > 1 for any t. The resulting
spatio-temporal graph G, consists of the snapshot graphs Gt

stacked in order for time frames t = 1, 2, . . . , T and the tem-
poral edges connecting them: G := (V,E) for V := ∪T

t=1Vt

and E := ∪T
t=1{Et ∪ Et−1;t}. This construction is shown in

Figure 2. There, a simple circle of 6 nodes serves as spatial
graph G0.
Finally, G is used to induce a generative probabilistic

graphical model that allows us to predict (an approxima-
tion to) each sensors maximum-a-posterior (MAP) state as
well as the corresponding marginal probabilities. The full
joint probability mass function is given by

pθ(X = x) =
1

Ψ(θ)

∏
v∈V

ψv(x)
∏

(v,w)∈E

ψ(v,w)(x).

Here, X represents the random state of all sensors at all T
points in time and x is a particular assignment to X. It
is assumed that each sensor emits a discrete value from a
finite set X . By construction, a single vertex v corresponds
to a single SCATS sensor s at a fixed point in time t. The
potential function of an STRF has a special form that obeys
the smooth temporal dynamics inherent in spatio-temporal
data.

ψv(x) = ψs(t)(x) = exp

⟨
t∑

i=1

1

t− i+ 1
Zs,i, ϕs(t)(x)

⟩

The STRF is therefore parametrized by the vectors Zs,i that
store one weight for each of the |X | possible values for each
sensor s and point in time 1 ≤ i ≤ T . The function ϕs(t)

generates an indicator vector that contains exactly one 1
at the position of the state that is assigned to sensor s at
time t in x and zero otherwise. For a given data set, the
parameters Z are fitted by regularized maximum-likelihood
estimation.
As soon as the parameters are learned from the data, pre-

dictions can be computed via MAP estimation,

x̂ = arg max
xV \U∈X

pθ(xV \U | xU), (1)

where U ⊂ V is a set of spatio-temporal vertices with known
values. The nodes in U are termed observed nodes. Notice
that U = ∅ is a perfectly valid choice that yields the most
probable state for each node, given no observed nodes. To
compute this quantity, the sum-product algorithm [17] is
applied, often referred to as loopy belief propagation (LBP).
Although LBP computes only approximate marginals and
therefore MAP estimation by LBP may not be perfect [14],
it suffices our purpose.

Gaussian Process Model for Flow Imputation
We model the junction based traffic flow values within a
Gaussian Process regression framework, similar to the ap-
proach in [20]. In the traffic graph each junction corresponds
to one vertex. To each vertex vi in the graph, we introduce
a latent variable fi which represents the true traffic flow at
vi. The observed traffic flow values are conditioned on the
latent function values with Gaussian noise ϵi

yi = fi + ϵi, ϵi ∼ N (0, σ2) . (2)

We assume that the random vector of all latent function
values follows a Gaussian Process (GP), and in turn, any
finite set of function values f = fi : i = 1, . . . ,M has a mul-
tivariate Gaussian distribution with mean and covariances
computed with mean and covariance functions of the GP.
The multivariate Gaussian prior distribution of the function
values f is written as

P (f |X) = N (0,K) , (3)

where K is the so-called kernel and denotes the M ×M co-
variance matrix, zero mean is assumed without loss of gen-
erality.

For traffic flow values at unmeasured locations u, the pre-
dictive distribution can be computed as follows. Based on
the property of GP, the vector of observed traffic flows (v
at locations −u) and unobserved traffic flows (fu) follows a
Gaussian distribution[

y
fu

]
∼ N

(
0,

[
K̂−u,−u + σ2I K̂−u,u

K̂u,−u K̂u,u

])
, (4)

where K̂u,−u are the corresponding entries of K̂ between the

unobserved vertices u and observed ones −u. K̂−u,−u, K̂u,u,

and K̂−u,u are defined equivalently. I is an identity matrix
of size | − u|.

Finally the conditional distribution of the unobserved traf-
fic flows are still Gaussian with the mean m and the covari-
ance matrix Σ:

m = K̂u,−u(K̂−u,−u + σ2I)−1 y

Σ = K̂u,u − K̂u,−u(K̂−u,−u + σ2I)−1 K̂−u,u .

Since the latent variables f are linked together in a graph
G, it is obvious that the covariances are closely related to
the network structure: the variables are highly correlated
if they are adjacent in G, and vice versa. Therefore we can
employ graph kernels [31] to denote the covariance functions
k(xi, xj) among the locations xi and xj , and thus the covari-
ance matrix.

The work in [20, 19] describes methods to incorporate
knowledge on preferred routes in the kernel matrix. Lacking
this information, we decide for the commonly used regular-
ized Laplacian kernel function

K =
[
β(L+ I/α2)

]−1
, (5)

where α and β are hyperparameters. L denotes the combi-
natorial Laplacian, which is computed as L = D−A, where
A denotes the adjacency matrix of the graph G. D is a
diagonal matrix with entries di,i =

∑
j Ai,j

2.3 OpenTripPlanner
OpenTripPlanner (OTP) is an open source initiative for

route calculation. The traffic network for route calculation

Figure 3: OpenTripPlanner User Interface. Map
view is on the right side including a green pin which
indicates the start location and a red pin that indi-
cates the target. Best viewed in color.

is generated using data from OpenStreetMap and (eventu-
ally) public transport schedules. Thus, OpenTripPlanner
allows route calculation for multiple modes of transporta-
tion including walking, bicycling, transit or its combinations.
However, vehicular routing is possible, but for data quality
reasons in OpenStreetMap concerning the turning restric-
tions [28] it is not advisable.
The default routing algorithm in OTP is the A∗ algo-

rithm [13] which utilizes a cost-heuristic to prune the Dijk-
stra search [8]. At every considered intermediate location
(between start and target location) the cost-heuristic esti-
mates a lower bound of the remaining travel costs to the
target. The cost estimate for traversing this intermediate
location is calculated using the sum of the costs to the loca-
tion and the estimated remaining costs.
OpenTripPlanner consists of two components an API and

a web application which interfaces the API using REST-
ful services. The API loads the traffic network graph, and
calculates the routes. The web application provides an in-
teractive browser based user interface with a map view. A
user of the trip planner can form a trip request by selecting
a start and a target location on the map, see Figure 3 for
a Screenshot of the user interface. Besides the web applica-
tion there exist OpenTripPlanner user interfaces for mobile
devices. The variety of existing user interfaces stresses the
sustainability of our decision for OpenTripPlanner.

2.4 The streams Framework
The need for real time capabilities in today’s data process-

ing and the steady decrease of latency from data acquisition
to knowledge extraction or information use from that data
led to a growing demand for general purpose stream pro-
cessing environments. Several such frameworks have evolved
– Storm, Kafka or Yahoo!’s S4 engine are among the most
popular open-source approaches to streaming data. They all
feature slightly different APIs and come with slightly differ-
ent philosophies. Focusing on a more middle-layer approach
is the streams framework proposed in [6], which aims at pro-
viding a light-weight high-level abstraction for defining data
flow networks in an easy-to-use XML configuration. It comes
with its own execution engine, but also features the trans-
parent execution of data flow graphs on existing engines such

as Storm. We base our decision for the streams framework
on its recent applications that highlight its high throughput
capabilities [9] and the built-in data mining operators [5].

SCATS Data Processing with streams
Within the streams framework, a data source is represented
as a sequences of data items, which in turn are sets of key-
value pairs, i.e. event attributes and their values. Processes
within a streams data flow graph consume data items from
streams and apply functions onto the data. The data flow
graph for manipulation, analysis and filtering of the streams
is formulated in an XML-based language that streams pro-
vides. A sample XML configuration is given in Figure 4.

<container>
<stream id="scats:data" url="http://..."

class="eu.insight.input.ScatsStream" />

<process input="scats:data">
<!-- .. custom functions .. -->
<eu.insight.data.DataNormalization />
<eu.insight.traffic.TrafficEstimator

id="predictor" />
</process>

</container>

Figure 4: XML representation of a streams con-
tainer with a source for SCATS data and a process
that applies a normalization to each data item and
then forwards it to a traffic estimation processor.

The process setup of Figure 4 defines a single data source
that provides a stream of SCATS sensor data. A process is
attached to this source and continuously reads items from
that source. For each of the data item, it applies a sequence
of custom functions (so called processors) that reflect data
transformations or other actions on the items. In the exam-
ple above, we include a SCATS specific DataNormalization
step as well as our custom TrafficEstimator implementation
directly into the data flow graph.

Service Level API
The streams runtime provides a simple RMI-based service
invocation of data flow components that do provide remote
services. The TrafficEstimator defines such a remote inter-
face and is automatically registered as a service with iden-
tifier “predictor”. This allows service methods of that es-
timator to be asynchronously called from outside the data
flow graph, i.e. from within our modified OpenTripPlanner
component.

The service method that is defined by the TrafficEstimator
is exactly the cost-retrieval function that is required within
the A∗ algorithm of the OpenTripPlanner:

getCost(x, y, t)

where x and y are the longitude and latitude of the location
and t is the time at which the traffic flow for (x, y) shall be
predicted.

3. EMPIRICAL EVALUATION
In this section we present the application of our proposed

trip planner to a use case in Dublin, Ireland. We used real
data streams obtained from the SCATS sensors of Dublin

Figure 5: Locations of SCATS sensors (marked by
red dots) within Dublin, Ireland. Best viewed in
color.

Figure 6: Spatial graph G0 that is derived from the
SCATS sensor locations. Each vertex is connected
to its 7 nearest neighbors in order to include short-
and long-distance dependencies.

city. The stream was collected between January and April
2013 and comprises ≈ 9GB of data. The SCATS dataset
includes 966 sensors, see Figure 5 for their spatial distribu-
tion among the traffic network. SCATS sensors transmit
information on traffic flow every six minutes. The data set
is publicly available2.
For the experiments in Dublin, the traffic network is gen-

erated based on the OpenStreetMap3 data. In the prepro-
cessing step the network is restricted to a bounding window
of the city size. Next, every street is split at any junction
in order to retrieve street segments. In result we obtain a
graph that represents the traffic network. The SCATS lo-
cations, are mapped to their nearest neighbours within this
street network.
In the preprocessing step the sensor readings are aggre-

gated within fixed time intervals. We tested various inter-
vals and decided for 30 minutes, as lower aggregates are too
noisy, caused by traffic lights and sensor fidelity.
The spatial graph G0 that is required for the STRF is con-

2Dublin SCATS data: http://www.dublinked.ie
3OpenStreetMap: http://www.openstreetmap.org

structed as k-nearest-neighbor (kNN) graph of the SCATS
sensor locations. In what follows, a 7NN graph (Figure 6)
is used, since a smaller k induces graphs with large discon-
nected components and a larger k results in more complex
models without improving the performance of the method.
The fact that no information about the actual street network
is used to build G0 might seem counterintuitive, but undi-
rected graphical models like STRF do not use or rely on any
notion of flow. They rather make use of conditional inde-
pendence, i.e. the state of any node v can can be computed
if the states of its neighboring nodes are known. Thus, the
kNN graph can capture long-distance dependencies that are
not represented in the actual street network connectivity.
The maximum traffic flow value that is measured by each
SCATS sensor in each 30-minutes-window is discretized into
one of 6 consecutive intervals. A separate STRF model for
each day of the week is constructed and each day is further
partitioned into 48 snapshot graphs, since we can divide a
day into 48 blocks of 30 minutes length. The model param-
eters are estimated on SCATS data between January 1 and
March 31 2013 and evaluated on data from April 2013.

The evaluation data is streamed as observed nodes into
the STRF which computes a new conditioned MAP predic-
tion (Equation 1) for all unobserved vertices of the spatio-
temporal graph G whenever time proceeds to the next tem-
poral snapshot. The discrete predictions are then de-discre-
tized by taking the mean of the bounds of the correspond-
ing intervals and subsequently forwarded to the Gaussian
Process which uses these predictions to predict values at
non-sensor locations. Notice that although the discretiza-
tion with subsequent de-discretization seems inconvenient
at a first glance, it allows the STRF to model any non-
linear temporal dynamics of the sensor measurements, i.e.
the flow at a fixed sensor might change instantly if the sensor
is located close to a factory at shift changeover.

Application of Gaussian Processes requires a joint multi-
variate Gaussian distribution among the considered random
variables. In our case, these random variables denote the
traffic flow per junction. Literature on traffic flow theory [18,
7] tested traffic flow distributions and supports a hypothesis
for a joint lognormal distribution. We test our dataset for
this hypothesis. Thus, we apply the Mardia [21] normality
test to the preprocessed data set. The test checks multivari-
ate skewness and kurtosis. We apply the implementation
contained in the R package MVN [16]. The tests confirmed
the hypothesis that the recorded traffic flow (obtained from
the SCATS system) is lognormal distributed. Thus, appli-
cation of Gaussian Processes to log-transformed traffic flow
values is possible. The hyper-parameters for the GP are
chosen in advance using a grid search. Best performance
was achieved with α = 1/2 and β = 1/2. The STRF provides
complete knowledge on future sensor readings which is nec-
essary for our GP. As the STRF model performs well [25],
we set the noise among the sensor data in our GP to a small
variance of 0.0001. For easy tractability, we set the GP up
to model about 5000 locations among the city of Dublin.

The OpenTripPlanner creates a query for the costs at a
particular coordinate in space-time. The query is transmit-
ted from the route calculation to the traffic model. There,
the query is matched to the discrete space. The spatial co-
ordinates are encoded in the WGS84 reference system [24].
To avoid precision problems during the matching between
the components, the spatial coordinate is matched with a

Figure 7: Results of route calculations for fixed start
and target at different timestamps (from top to bot-
tom: 7:00, 8:00, 8:30). Best viewed in color.

nearest neighbour method using a KDTree data structure
[23]. The nearest neighbor matching offers also the possibil-
ity to query costs for arbitrary locations. The timestamp of
the query is discretized to one of the 48 bins we applied in
the STRF.
We apply our trip planner for a particular Monday in data

set (8th April 2013) and compute routes from a fixed start
to a fixed target at different time stamps. Figure 7 shows
that different routes are calculated depending on the traffic
situation.

4. DISCUSSION AND FUTURE WORK
Within this paper we presented a novel approach for trip

planning in highly congested urban areas. Our approach
computes intelligent routes that avoid traffic hazards which
did not yet occur. The proposed trip planner consists of a

continuous traffic model based on real-time sensor readings
and a web based user interface. We combined the real-time
traffic model and the trip calculation with a streaming back-
bone. We applied the trip planner to a real-world use case
in the city of Dublin, Ireland. The city is amongst the most
congested ones and jam avoidance is a natural goal of the
citizens.

Our traffic model combines latest advances in traffic flow
estimation. On the one hand, prediction of future sensor val-
ues is performed with a spatio-temporal random field, which
is trained in advance. Based on these estimates, the traffic
flow for unobserved locations is performed by a Gaussian
Process Regression. We successfully applied the Regularized
Laplacian Kernel. In literature, also other kernels have been
successfully applied to the problem, [19, 30]. Exploration of
different kernel methods is subject for future research.

The route calculation component of our approach is based
upon the OpenTripPlanner project as it provides a separa-
tion among the trip planner and the user interface. The
OpenTripPlanner interface for mobile devices4 guides the
direction for further extension of our approach to a personal
navigation device.

We perform trip calculation with the A∗ algorithm, an
speedup using contraction hierarchies (a speedup heuristic
that introduces shortcuts in the traffic network, compare
[11]) is promising. This allows the extension to multi-modal
trip planning (compare [4]) and computation in embedded
devices. Prediction of delays in the public transport network
are another important direction for multi-modality.

Besides the SCATS data also other data sources provide
useful information for dynamic cost estimation. The inte-
gration of bus travel times or user generated (crowdsourc-
ing and social network) data in our model is possible by
dynamically changing the traffic network (in case of road
blockages) or introducing dynamic weights (in case of a ac-
cident or flooding on a street segment). Future studies need
to explore these directions.

One still might argue that if all people use our trip planner
and all people use the same alternative way to avoid a jam it
will occur somewhere else. This hypothesis needs to be val-
idated. The effect might not be so strong as the individual
persons do not start at the same time and do not have same
start and target locations thus traffic distributes differently
among the traffic network. If our STRF model is updated
regularly the jams might be prevented. Another path, we
follow in future is individual route calculation, which adds
some minor perturbations to the route in order to avoid oc-
currence of unexpected jams that result from route delivery.

The real-world application of the trip planner was per-
formed as part of the INSIGHT project [3]. Aim of the
European funded project (grant number 318225) is not just
congestion reduction, but also the real-time prediction of up-
coming hazards and proactive control. The city of Dublin is
subject to many floods that cause problems for urban traffic.
Our trip planner is basis for further extensions that avoid
flooded areas based on flood observations and predictions.

5. RELATED WORK
Previous sections already discussed related approaches.

Here, we present briefly recent work on dynamic cost es-

4OpenTripPlanner for Android: https://github.com/
cutr-at-usf/opentripplanner-for-android/wiki

timation for trip planning in smart cities. Recent work
[10] addresses travel time forecasts based on the delays in
the public transportation system. Main drawback of their
method is that buses have extra lanes at most junctions and
their movement follows a regular pattern. The inclusion of
traffic loop readings was motivated in their section on future
work. The dynamic traffic flow estimation is a major prob-
lem in traffic theory. Common approach is the usage of a
k-Nearest Neighbour algorithm which calculates traffic flow
estimates as weighted average of the k nearest observations
[12]. In contrast, our approach models future traffic flow
values based on their temporal patterns, correlations and
dependencies. Foremost, our model requires less memory as
k-NN which has to store all previously seen sensor values
for continuous traffic flow estimation. Another paper that
compares two prediction models for traffic flow estimation
is presented in [29]. By combining a Gauss Markov Model
with a Gaussian Process, their work provides a faster model
which is suitable for near time predictions (as required for
automatic signal control). The model estimates future val-
ues by consecutive application of the model. In contrast,
the hereby presented work estimates all future time slices
at once. In result, we could build the valuable trip planner
application on top of the traffic estimation model and high-
lighted its usability. Improvement of the estimation method,
and comparison of estimation accuracy is subject for future
work.

6. ACKNOWLEDGMENTS
This research has received funding from the European

Union’s Seventh Framework Programme (FP7/2007-2013)
under grant agreement number 318225, INSIGHT – “In-
telligent Synthesis and Real-time Response using Massive
Streaming of Heterogeneous Data”. Additionally, this work
has been supported by Deutsche Forschungsgemeinschaft
(DFG) within the Collaborative Research Center SFB 876
“Providing Information by Resource-Constrained Data Anal-
ysis”, project A1. We acknowledge Dublin city council and
Dominik Dahlem for data collection and preparation of the
SCATS dataset. We thank Jakub Marecek for assistance
with the OpenTripPlanner project, and the anonymous re-
viewers for their inspiring feedback.

7. REFERENCES
[1] SCATS. Sydney Coordinated Adaptive Traffic System,

Available: http://www.scats.com.au/ [Last accessed:
27 June 2013], 2013.

[2] TomTom European Congestion Index. TomTom,
Available:
http://www.tomtom.com/lib/doc/congestionindex/2013-
0322-TomTom-CongestionIndex-2012-Annual-EUR-
mi.pdf [Last accessed: 26 June 2013],
2013.

[3] A. Artikis, M. Weidlich, F. Schnitzler, I. Boutsis,
T. Liebig, N. Piatkowski, C. Bockermann, K. Morik,
V. Kalogeraki, J. Marecek, A. Gal, S. Mannor,
D. Gunopulos, and D. Kinane. Heterogeneous stream
processing and crowdsourcing for urban traffic
management. In Proceedings of the 17th International
Conference on Extending Database Technology, page
(to appear), 2014.

[4] H. Bast, M. Brodesser, and S. Storandt. Result
Diversity for Multi-Modal Route Planning. In
D. Frigioni and S. Stiller, editors, 13th Workshop on
Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems, volume 33 of OpenAccess
Series in Informatics (OASIcs), pages 123–136,
Dagstuhl, Germany, 2013. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[5] C. Bockermann and H. Blom. Processing Data
Streams with the RapidMiner Streams-Plugin. In
Proceedings of the 3rd RapidMiner Community
Meeting and Conference, 2012.

[6] C. Bockermann and H. Blom. The streams framework.
Technical Report 5, TU Dortmund University, 12
2012.

[7] G. Davis. estimation theory approach to monitoring
and updating average daily traffic. Technical Report
mn/rc 97-05, minnesota department of transportation,
office of research administration, january 1997.

[8] E. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1(1):269–271, 1959.

[9] A. Gal, S. Keren, M. Sondak, M. Weidlich, H. Blom,
and C. Bockermann. Grand challenge: The techniball
system. In Proceedings of the 7th ACM International
Conference on Distributed Event-based Systems, DEBS
’13, pages 319–324, New York, NY, USA, 2013. ACM.

[10] L. Gasparini, E. Bouillet, F. Calabrese, O. Verscheure,
B. O’Brien, and M. O’Donnell. System and analytics
for continuously assessing transport systems from
sparse and noisy observations: Case study in dublin.
In Intelligent Transportation Systems (ITSC), 2011
14th International IEEE Conference on, pages
1827–1832, 2011.

[11] R. Geisberger, P. Sanders, D. Schultes, and D. Delling.
Contraction hierarchies: Faster and simpler
hierarchical routing in road networks. In C. McGeoch,
editor, Experimental Algorithms, volume 5038 of
Lecture Notes in Computer Science, pages 319–333.
Springer Berlin Heidelberg, 2008.

[12] X. Gong and F. Wang. Three Improvements on
KNN-NPR for Traffic Flow Forecasting. In
Proceedings of the 5th International Conference on
Intelligent Transportation Systems, pages 736–740.
IEEE Press, 2002.

[13] P. Hart, N. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimum cost
paths. Systems Science and Cybernetics, IEEE
Transactions on, 4(2):100–107, 1968.

[14] U. Heinemann and A. Globerson. What cannot be
learned with bethe approximations. In Proceedings of
the 27th Conference on Uncertainty in Artificial
Intelligence, Barcelona, Spain, 2011.

[15] ISO 14819-1:2003. Traffic and Traveller Information
(TTI) – TTI messages via traffic message coding –
Part 1: Coding protocol for Radio Data System –
Traffic Message Channel (RDS-TMC) using
ALERT-C. International Organization for
Standardization, 2003.

[16] S. Kormaz. MVN: Multivariate Normality Tests, 2013.
R package version 1.0.

[17] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger.
Factor graphs and the sum-product algorithm. IEEE

Transactions on Information Theory, 47(2):498–519,
2001.

[18] G. Lay. Handbook of Road Technology, Fourth Edition.
taylor & francis, 2009.

[19] T. Liebig, Z. Xu, and M. May. Incorporating mobility
patterns in pedestrian quantity estimation and sensor
placement. In J. Nin and D. Villatoro, editors, Citizen
in Sensor Networks, volume 7685 of Lecture Notes in
Computer Science, pages 67–80. Springer Berlin
Heidelberg, 2013.

[20] T. Liebig, Z. Xu, M. May, and S. Wrobel. Pedestrian
quantity estimation with trajectory patterns. In P. A.
Flach, T. Bie, and N. Cristianini, editors, Machine
Learning and Knowledge Discovery in Databases,
volume 7524 of Lecture Notes in Computer Science,
pages 629–643. Springer Berlin Heidelberg, 2012.

[21] K. V. Mardia. Measures of multivariate skewness and
kurtosis with applications. Biometrika, 57:519–530,
1970.

[22] B. McHugh. The opentripplanner project. Technical
Report Metro RTO Grant Final Report, TriMet,
August 2011.

[23] A. Moore. An introductory tutorial on kd-trees.
Technical Report Technical Report No. 209, Computer
Laboratory, University of Cambridge, Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA,
1991.

[24] National Imagery and Mapping Agency. Department
of Defense World Geodetic System 1984: its definition
and relationships with local geodetic systems.
Technical Report TR8350.2, National Imagery and
Mapping Agency, St. Louis, MO, USA, january 2000.

[25] N. Piatkowski, S. Lee, and K. Morik. Spatio-temporal
random fields: compressible representation and
distributed estimation. Machine Learning,
93(1):115–139, 2013.

[26] L. Richardson and S. Ruby. RESTful Web Services.
O’Reilly Series. O’Reilly Media, Incorporated, 2007.

[27] R.-P. Schäfer. IQ Routes and HD Traffic: Technology
Insights About Tomtom’s Time-dynamic Navigation
Concept. In Proceedings of the the 7th Joint Meeting
of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on The Foundations
of Software Engineering, ESEC/FSE ’09, pages
171–172, New York, NY, USA, 2009. ACM.

[28] S. Scheider and J. Possin. Affordance-based
individuation of junctions in open street map. Journal
of Spatial Information Science, 4(1):31–56, 2012.

[29] F. Schnitzler, T. Liebig, S. Mannor, and K. Morik.
Combining a gauss-markov model and gaussian
process for traffic prediction in dublin city center. In
Proceedings of the Workshop on Mining Urban Data at
the International Conference on Extending Database
Technology, page (to appear), 2014.

[30] B. Selby and K. M. Kockelman. Spatial prediction of
traffic levels in unmeasured locations: applications of
universal kriging and geographically weighted
regression. Journal of Transport Geography, 29:24–32,
May 2013.

[31] A. Smola and R. Kondor. Kernels and regularization
on graphs. In Proc. Conf. on Learning Theory and
Kernel Machines, pages 144–158, 2003.

[32] TISA Executive Office. Provision of a free minimum
universal traffic information service. Technical Report
EO12004, The Traveller Information Services
Association, May 2012.

