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ABSTRACT Analysis of people’s movements represented by continuous sequences of
spatio-temporal data tuples have received lots of attention in recent years. The focus of
those studies was mostly GPS data recorded on a constant sample rate. However, the cre-
ation of intelligent location-aware models and environments also requires reliable localiz-
ation in indoor environments as well as in mixed indoor/outdoor scenarios. In these cases,
signal loss makes usage of GPS infeasible; therefore other recording technologies evolved.
Our approach is analysis of episodic movement data. This data contains some uncertainties
among time (continuity), space (accuracy), and the number of recorded objects (coverage).
Prominent examples of episodic movement data are spatio-temporal activity logs, cell-
based tracking data, and billing records. To give one detailed example, Bluetooth tracking
monitors the presence of mobile phones and intercoms within a sensor’s footprints. Usage
of multiple sensors provides flows among the sensors. Most existing data mining algor-
ithms use interpolation and therefore are infeasible for this kind of data. For example,
speed and movement direction cannot be derived directly from episodic data; trajectories
may not be depicted as a continuous line; and densities cannot be computed. Still, the
data hold much information on group movement. Our approach is to aggregate movement
in order to overcome the uncertainties. Deriving a number of objects for the spatio-
temporal compartments and transitions among them gives interesting insights on the
spatio-temporal behavior of moving objects. As a next step to support analysts, we
propose clustering the spatio-temporal presence and flow situations. This work focuses
as well on creation of a descriptive probability model for the movement based on Spatial
Bayesian Networks. We present our methods on a real world data set collected during a
football game in Nı̂mes, France in June 2011.

KEYWORDS Bluetooth Tracking; Mobility Mining; Event Monitoring

Introduction

Major airports, arenas, and stadiums are designed to attract thousands or billions
of visitors each year. One trend has been the building of larger infrastructures
(airports, stadiums) while another trend is the growing number of visitors at
major events. This hazardous development has led to devastating disasters
(for example, the Loveparade stampede in Duisburg, Germany in 2010). Thus,
visitor monitoring in complex facilities became an important subject. But
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understanding the movement behavior, identification of attractors and distractors,
and determination of waiting times, as well as localization of congestions and
bottle-necks also gives insights into visitor preferences and motivations at a par-
ticular site or event. Knowing such detailed information about indoor pedestrian
behavior also gives a location-based performance indicator for different locations
inside buildings. Various locations and attractions can be ranked by their popular-
ity, safety, or frequency. Recently evolved Bluetooth tracking (Bruno and Delmas-
tro, 2003) became the state-of-the-art method for the combined indoor/outdoor
monitoring of pedestrian movement (Andrienko et al., 2012; Hagemann and
Weinzerl, 2008; Leitinger et al., 2010; Liebig and Kemloh Wagoum, 2012; Stange
et al., 2011; Versichele, 2012a, 2012b).

Visual exploration of the collected partial trajectories gives indispensable
insights to an event (Liebig and Kemloh Wagoum, 2012; Utsch and Liebig,
2012). For the determination of visitor preferences or identification of potential
hazards, it is also necessary to discover the dependencies, correlations, and pat-
terns among the movements. Therefore, this work tackles the computationally
enabled visual exploration of a massive Bluetooth tracking dataset for inner
dependencies which was the result of the non-random movement of people. Exist-
ing approaches, e.g. direct database access or use of a trajectory data warehouse
(TDW) (Orlando et al. 2007; Raffaetà et al., 2011), are unfeasible as the first one
requires powerful database hosts and the second pre-aggregates the data and pre-
vents further analysis. Our proposed method contains two stages. We represent
the massive movement data by an easy-to-handle descriptive model, namely a
Spatial Bayesian Network (SBN) (Liebig et al., 2008, 2009). This probabilistic
model denotes the conditional probabilities among visits to discrete locations
and thus holds all required information in a compact format for further querying.
In step 2 we use the previously trained SBN for visual analysis and depict the
probability distributions on three-dimensional thematic maps.

Analysis of people’s movements represented by continuous sequences of
spatio-temporal data tuples has received considerable attention in recent years
(Giannotti and Pedreschi, 2008). The focus of the studies was mostly GPS data
recorded on a constant sample rate. However, creation of intelligent, location-
aware models and environments also requires reliable localization in indoor
environments as well as in mixed indoor/outdoor scenarios. In these cases,
signal loss makes the use of GPS infeasible, therefore other recording technologies
evolved.

Besides video surveillance and 3D laser scan technologies, Bluetooth track-
ing technology emerged as a passive pedestrian tracking technology. Bluetooth
tracking provides three major benefits: (1) no additional scaffoldings are
required, (2) no adjustment of the sensor beacons is necessary, and (3) the
sensors are seamlessly usable indoors and outdoors. These circumstances
have made Bluetooth tracking the preferred application for passive pedestrian
tracking. After a detailed literature review, this work addresses the analysis
of a soccer stadium data set collected in Nı̂mes, France in June 2011 (Liebig
and Kemloh Wagoum, 2012).

The remainder of the paper proceeds as follows. The upcoming section gives
an overview of related Bluetooth tracking work and introduces pedestrian mobi-
lity analysis with Bluetooth tracking data. After that, we give a brief summary of
Spatial Bayesian Networks and present our approach. Finally, we conclude and
discuss an outlook on future research.
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Bluetooth Scanner Technology

The Bluetooth sensors (also scanners, transceivers, or beacons) throughout this
work are inspired by Bruno and Delmastro (2003) and are assembled using a
microcomputer and three USB Bluetooth antennas. A Linux-based software acti-
vates the antenna’s inquiry mode and logs the hashed MAC addresses of the
detected devices.1 Hashing the MAC address prevents re-identification of
devices in other datasets and increases privacy for the tracked persons. A
common hash function is the sha256 algorithm (NIST, 2002) as its reverse function
is very hard to compute. Thus, the scan interval of approximately 10.24s (Bruno
and Delmastro, 2003) is (theoretically) reduced to its third. This time span is
required for frequency hopping and device discovery (Bluetooth SIG, 2004).
However, in practice the antennas are not synchronous and data points are not
recorded with a constant frequency. The recorded data log entries consists of:

[time stamp], [sensor ID], [sha256(MAC)], [signal strength].

The two different antenna types which are used have a range of either 20 m or
100 m. Nevertheless, since the inquiry mode requires communication in both
directions (from the sensor to the mobile device and vice versa) (Bluetooth SIG,
2004) the size of the sensor footprint not only depends on the sensors antennas
but also on the antenna in the mobile device (and its configuration). Thus, lower
sensor ranges of about 20 m are assumed. The recorded unique MAC addresses
of the Bluetooth antennas of the mobile devices consist of six bytes. Three of
them depend on the vendor and provide valuable information for analysis as
the type of the Bluetooth device can roughly be estimated. The ratio of detected
people varies over space and time due to different Bluetooth visibility rates.

Data Analysis Workflow

A first systematic workflow for mobility mining from Bluetooth tracking data for a
pedestrian monitoring scenario was introduced in Stange et al. (2011). However,
this primary framework was specialized for an event monitoring scenario.
Recently, in Liebig et al. (2012), the workflow was extended to a more general
one, reflecting the phases of the knowledge discovery process (Fayyad et al.
1996). In their work, Bluetooth-based mobility studies are conducted in three con-
secutive phases consisting of five steps.

. The field study phase is performed during (1) survey design and (2) data collec-
tion.

. The second visual analysis phase is conducted within the (3) data preparation,
aggregation and (4) visual analysis.

. In the knowledge discovery phase we conduct the (5) pedestrian analysis step.

Survey Design and Data Collection. The field study phase comprises the survey
design and data collection step. For the survey design, the number and location
of the Bluetooth scanners needs to be derived from the application requirements.
Furthermore, in the case of non-stationary but moving Bluetooth scanners, their
spatio-temporal distribution needs to be configured (Naini et al., 2011).

The data collection could be done offline or online. Offline data collection
implies batch processing of the recorded data, whereas online communication
allows for real-time analysis.
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Data Pre-Processing and Filtering. Succeeding the data collection, recorded data log
entries need to be filtered to omit noisy or unwanted entries. For example, in the
case of pedestrian tracking, it is useful to get rid of vehicular entries caused by car
multimedia equipment. The filtering could be performed on all dimensions of the
recorded tuples: space, signal strength (for higher granularity of space), time, and
vendor (according to MAC address). The filtering is described in detail in
Andrienko et al. (2012) and Stange et al. (2011).

Data Aggregation and Visual Analysis. As described in the literature, after the data
have been reduced to the relevant entries, the next step is triggered by the moni-
toring task. As Bluetooth tracking data is episodic movement data (as it contains
the common uncertainties on continuity, accuracy, and coverage) spatio-temporal
aggregation is a common step, described in the literature (Andrienko et al., 2012;
Liebig et al., 2012). However, aggregation time intervals need to be chosen accord-
ing to the monitoring task, and the literature varies from three-minute aggregation
(Utsch and Liebig, 2012) for fast microscopic localization tasks to aggregation of
complete days (Liebig et al., 2012) for the estimation of average daily traffic
(ADT). The aggregation could be performed on arbitrary events denoted from
the movement data. The literature describes visit events ,o,p,t. occurring when-
ever a Bluetooth device o is in a particular location p for a time period exceeding t.
Another common event type are moves between two locations: ,o,pi,pj. which
occur if both places pi and pj are visited consecutively (Liebig et al., 2013).

The aggregation of these events in space and time returns object counts for
flow (flow counts) and visits (presence counts) which correspond to the macro-
scopic values of movement (Andrienko et al., 2012). Visualizations of the aggre-
gated values help for data understanding and for coarsening filters of the
preprocessing step (Andrienko et al., 2012).

Mobility Data Analysis

Similar to monitoring technologies, the models for pedestrian monitoring dis-
tinguish between microscopic and macroscopic aspects of mobility (Hägerstrand,
1974). Whereas microscopic models describe individual behavior and provide tra-
jectories for them, macroscopic models aim at modeling the moving population
and use values such as density, quantity, or speed to characterize pedestrian
flows. Both of these views on movement are closely related as macroscopic
values can be derived by aggregation from microscopic ones (Hägerstrand, 1974).

Microscopic Mobility Analysis

The analysis of microscopic pedestrian movement can make use of the recorded
radio signal strengths (Utsch and Liebig, 2012) in order to achieve an accurate pos-
ition and movement representation of the enabled Bluetooth devices. In their
work, which makes use of fingerprinting with a k-Nearest Neighbor algorithm,
the achieved positioning precision is about four meters.

Another approach, presented in Liebig and Kemloh Wagoum (2012), makes
use of proximity sensing and hands the generated episodic position readings to
an agent-based simulation of pedestrian mobility (in this case the Generalized
Centrifugal Force Model (Chraibi et al., 2010)) in order to achieve microscopic
values on pedestrian mobility. Triggered by the episodical readings of people’s
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presence, the simulation generates a reasonable assumption on the pedestrian dis-
tribution in reality.

Macroscopic Mobility Analysis

The proximity-based tracking of Bluetooth devices is applied mostly as valuable
temporal information about stay times and transition times. Spatial information
on movement sequences and quantities is generated directly.

The analysis of zoo visitors presented in recent work (Ellersiek et al., 2012)
distinguishes between position-based and path-based analyses. However, since
scanners may not be placed at any arbitrary position, the estimation of the macro-
scopic values for unobserved locations is necessary. Recent work that uses the
same zoo dataset makes use of sequence movement patterns in order to estimate
accurate pedestrian quantities (Liebig et al., 2012). Their method is based on Gaus-
sian Process regression methods, including a random walk-based kernel function
that represents the movement patterns within a site.

In contrast to these stationary studies, moving sensors are used to track
visitor presence along a race track (Versichele et al., 2012a, 2012b, 2012c). In
Naini et al. (2011) moving sensors are used to estimate the total number of visitors
in a bounded area.

Exemplary Analysis

Previous sections highlighted recent development in Bluetooth tracking and its
analysis. In this paper we perform tests on a real-world Bluetooth tracking
dataset collected during a soccer match at the Stade des Costières, Nı̂mes
(France) (Liebig and Kemloh Wagoum, 2012). The data were collected using 15
Bluetooth beacons (Bruno and Delmastro, 2003) at various locations in the
stadium (See Figure 1). The numbers in the picture denote our sensor IDs and
are thus not sequential.

During this study, 14 percent of the visitors (553 of 3,898 persons) were
recorded. We conducted a detailed study of stadium visitors during a match in
a German multi-purpose arena (Liebig, 2013). There, we compared 15-minute
aggregates to the data of the electronic entry control. At all gates of the
stadium, the recorded data had a high correlation of about 0.97. Thus, the recorded
data were representative.

The recorded Bluetooth tracking dataset contains sequence movement pat-
terns. The most frequent movement pattern with more than one location starts
at the main entrance (in the upper left corner in Figure 1) and ends at a tribune
(locations at the sides of the stadium, compare also, Figure 2). The movement in
the stadium thus is not a random walk but aims at a target. These individual
movement preferences cause correlations among the sensor readings. In Liebig
et al. (2013) we utilized these movement patterns for sensor placement and data
imputation at unobserved locations.

Next, we visually explored the correlations contained in the soccer dataset
(Liebig and Kemloh Wagoum, 2012). The visual analysis of movement dependen-
cies among discrete regions is the subject of our previous work (presented in
Liebig et al., 2008, 2009). There, the contained dependencies are represented by
a Spatial Bayesian Network that connects the different regions by directed
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edges and associated conditional probability tables. In the results, queries for co-
visits of spatial regions given arbitrary (positive or negative) evidences can be
answered. Next, we apply this method (Liebig et al., 2008) to the presented
dataset and study the contained movement preferences in detail (See Figure 2).

For visualization of the three-dimensional dependencies, we create a Voronoi
Dirichlet tessellation (Dirichlet, 1850; Voronoi, 1908) of a three-dimensional
stadium model.

Materials to the resulting geometries (color and opacity) are assigned
according to the probability distribution computed by the Spatial Bayesian
Network. Figure 2 depicts the results of the Spatial Bayesian Network for four
different queries. Red colors indicate a high visit probability; blue colors indicate
a low probability. The yellow arrows in the picture mark the points of positive
evidence. The picture A (in the upper-left corner) depicts the probability distri-
bution given the evidence that the sensor at the ground floor (sensor 34 for

Figure 1: 3D Sensor Placement at Stade des Costières, Nı̂mes (France) August 5, 2011

Figure 2: Visual representation of the spatial correlations in the soccer dataset: yellow arrow denotes
the evidence of the query.
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comparison with Figure 1) has been visited. It is remarkable that the probability
on this side of the stadium is high but low in most of the other parts. In conjunc-
tion with the VIP rooms (lower left corner of Figure 1) some tribunes possess a
relatively high probability (depicted at the bottom of Figure 2). These places
are visited by the catering staff and prominent visitors from all tribunes after
the match.

In the next step we examine the impact of the staff and prominent guests by
changing the evidence to a restricted entry within the Spatial Bayesian Network.
Results are depicted in Figure 2b. All paths that have been used by the catering
crew and safety deputies are inked in red which denotes a high probability of
movement. The shops possess a relatively high probability. They were located
in the uppermost floor of the two towers in the left side of the picture and also
in the VIP lounges. Safety deputies helped us during data collection, thus it can
be seen to the right that they visited sensor location three (top of the upper left
tower, compare Figure 2) in order to check its presence. In the bottom of
Figure 2 we combine multiple points of evidence within the query. To the left
(See Figure 2[c]) is a visualization of the combined probability of the visitors at
the entry to the major tribune and to the VIP entry. The visitors selected by this
query disperse through the major tribunes and within the VIP rooms. By
further addition of evidence at sensor location three, the places considered so
far reach their highest conditional probability. Most likely, this untypical move-
ment pattern depicted in Figure 2d was our movement for maintenance of the
sensors. Though the movement frequency for maintenance is low with respect
to the overall movement, it is filtered by this query and pops up under the
posed conditions. The tribune to the left shows a very low probability as it
could not be traversed. The tribune on the right was open for traversing before
the match began. Thus, our visual analysis reflects these circumstances and
helps to understand movement behavior contained in the dataset.

After visual analysis of the recorded spatial movement correlations our
further visual analysis focuses on the temporal analysis of the dataset. Since epi-
sodic movement data contain uncertainties on individual movement, the pro-
posed approach in Andrienko et al. (2012) is the spatio-temporal aggregation of
presence and moves. These results in presence and flow situations which denote
for a time interval dt the total number of visits for each discrete location as well
as the total number of moves among pairs of locations. Thus, the soccer dataset
(Liebig and Kemloh Wagoum, 2012) is automatically divided into three consecu-
tive time intervals (arrival, match, departure) derived from the clustering of pres-
ence and flows (See Figure 3). In this picture the lines represent the number of
persons per scanner (See Figure 3a) or the numbers of persons per link among
two locations (See Figure 3b). The background coloring of the Figure utilizes
Sammon’s mapping (Sammon, 1969). Sammon’s projection maps high dimen-
sional points on a two-dimensional color-plane; in the results, similar points are
assigned similar colors and vice versa. We apply this method to the flow and pres-
ence vectors at a particular time and achieve a color for each of these vectors which
is plotted in the background of Figure 3. Based on the achieved visual analysis of
the flow data (depicted in Figure 3) characteristic time-spans are (14:00, 20:00,
21:45, 22:00). These time intervals correspond to the three different consecutive
phases of the match: arrival of the visitors, match, and the departure after the
match. Note that in Figure 3b (which analyzes the moves of the visitors) even
the break of the match is visible. Movement of the stadium visitors differs in
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each of these time spans from its successive time interval (indicated by different
colors in Figure 3b).

Conclusion and Summary

This work gave an overview of Bluetooth tracking and related literature. We
tackled the task to explore and analyze spatio-temporal Bluetooth tracking data.
The question is of high interest as Bluetooth tracking is nowadays used for
various pedestrian monitoring applications. The challenge related to this task is
the three-dimensionality of the movement data. Thus, we created a three-dimen-
sional Dirichlet-Voronoi tessellation of the building based on the positions of the
sensors. The visualization was integrated using OGC compliant interfaces and a
web service. This allows easy integration into other software modules.

Another challenge, the dependency analysis of the recorded movement data,
was addressed using Spatial Bayesian Networks as an intermediate data structure
which holds just the required data instead of complete trajectories. Once the
model is built, querying is fast and flexible and overcomes the drawbacks of exist-
ing methods that rely on random memory access or aggregation (TDW). The pro-
posed methods were integrated and tested using an event monitoring case.
Recorded data was analyzed in order to identify and reconstruct pedestrian move-
ment. Analysis of the inner-trajectory correlations revealed in-traversable tribunes
as well as visitor preferences.

The analysis of the recorded data is useful to the stadium for understanding
people’s behavior and preferences. Thus, the phases of the event can be analyzed.
As an example, the flow of the people during the break is of interest to increase the
sales volume of the snack bars. For safety purposes, the normal user behavior
could be used as expert knowledge on the preferred movement behavior. The
clustering of presence and flow situations is important for testing the applicability
of movement models which are trained for particular conditions.

Figure 3: Clustering of (a) presence and (b) flow situations over time
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Our study shows that Bluetooth tracking is a valid approach for recording
episodic movement data about people’s movements. Nevertheless, many influ-
ences make this uncertain (e.g., number of people with enabled Bluetooth
devices, locations of the sensors). Therefore, in every application, the representa-
tiveness (spatial and temporal) has to be checked in a pre-study by comparison to
an alternative (tracking or counting) data source.

Future Work

Episodic movement data are quite frequent, and more methods for its analysis are
needed. During the field study phase, more automatic methods are required that
would help in making decisions about the placement of sensors. We describe an
approach for reduction of required sensors in Liebig (2013). Furthermore a
detailed analysis of the Bluetooth representativeness will be conducted; first
results are in Liebig (2013).

Note

1. A similar software for Bluetooth Tracking is published by the University of Ghent at https://
github.com/Rulus/Gyrid with GPL license, last accessed June 30, 2012.
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