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Extended Abstract 

Traffic volume estimation is a natural task in macroscopic street based traf-
fic analysis systems and has important applications, e.g., quality-of-service 
evaluation, location evaluation or risk analysis. Nowadays, intelligent 
transportation systems rely on stationary sensors, which provide traffic 
volume measurements at predefined locations (Kinane et. al., 2014). How-
ever, imputation of the unobserved traffic flow values and short term-
predictions are highly important research topics (Schnitzler et. al., 2014).  

Application of Gaussian Processes is an appealing state-of-the-art method 
that outperforms recent methods (Liebig et. al., 2013). The method bases 
on a covariance matrix that denotes the correlations among the traffic flux 
values at various locations. Due to the computational complexity of Gaussi-
an Process Regression, application to urban areas were restricted either to 
small sites or a sample of locations (Artikis et. al., 2014). This paper intro-
duces and discusses the application of a speed-up heuristic to Gaussian 
process regression for the traffic flow estimation problem.  

The computational complexity results from the kernel inversion which is 
part of the Gaussian Process Regression. We relax this global function to a 
focal one which incorporates not all data at once, but iteratively incorpo-
rates the data of the neighborhood. The neighborhood, however, has to be 
defined in advance. This neighborhood definition should be consistent to 
the correlation expressed by the kernel function. I.e., if a kernel models cor-
relation based on the spatial closeness, the spatial closest neighbors are 
most likely the important locations for estimation of the unknown neigh-
bor. Intuitively, this heuristic introduces a Markov assumption, whereas the 
traffic flow at one location is fully defined by the flow situation of its neigh-
bors. Furthermore, as we want the Gaussian Process Regression to be appli-
cable we may want to fix the kernel size and thereof the number of neigh-
bors being incorporated for traffic flow prediction. This step seems to be 
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similar to the k-Nearest Neighbor method. Indeed, with usage of a linear 
kernel the methods are identical. In general the Markov assumption does 
not hold (Liebig et. al. 2008, Liebig et. al. 2009) thus appropriate decision 
on the neighborhood is crucial in this heuristic. 

With this heuristic, we expect the Gaussian Process Regression to perform 
well in smart city applications. We will apply the heuristic in the city of 
Dublin using traffic loop data of about 620 fixed stationary sensors, com-
pare Figure 1. One smart-city application of this heuristic is the integration 
in the situation aware tripplanner, we presented in (Liebig et. al. 2014). 

 

Figure 1. Visualization of the traffic loop sensors in Dublin City (red dots) and sketch of the 
heuristic to use closest neighbors for traffic flow imputation. 
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