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Privacy Preserving Centralized Counting of
Moving Objects

Thomas Liebig

Abstract Proliferation of pervasive devices capturing sensible data streams, e.g.
mobility records, raise concerns on individual privacy. Even if the data is aggre-
gated at a central server, location data may identify a particular person. Thus, the
transmitted data must be guarded against re-identification and an un-trusted server.
This paper overcomes limitations of previous works and provides a privacy preserv-
ing aggregation framework for distributed data streams. Individual location data is
obfuscated to the server and just aggregates of k persons can be processed. This is
ensured by use of Pailler’s homomorphic encryption framework and Shamir’s secret
sharing procedure. In result we obtain anonymous unification of the data streams in
an un-trusted environment.
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1 Introduction

Smartphones became a convenient way to communicate and access information.
With the integration of GPS sensors mobility mining was pushed forward [1]. The
mobility information of multiple devices is usually stored on a server which per-
forms analysis in order to extract knowledge on the movement behaviour. In the
easiest case this is the number of visitors to dedicated places, compare Figure 1.

The processing of the data streams became infeasible for large use cases, where
millions of people are monitored, and massive data streams have to be processed.
In this Big Data scenarios, the expensive computation (matching and counting in
individual, continuous GPS streams) is split among the parties and just the aggre-
gation step remains in the server (In contrast [2] presents a method that distributes
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the query). Thus, the continuous movement records (GPS) are reduced to episodic
movement data [3] consisting of geo-referenced events and their aggregates: number
of people visiting a certain location, number of people moving from one location to
another one, and so on. The preprocessing of the GPS data streams is then locally
embedded in the location based devices and the aggregation is subject to crowd
sourcing. Recent work focusses on in-situ analysis to monitor location based events
(visits [4], moves [5]) or even more complex movement patterns [6] in GPS streams.
In all cases a database with the locations or patterns of interest is provided in ad-
vance, and the mobile device computes event-histograms for succeeding time-slices.
These histograms are much smaller and may be aggregated by the server in order to
achieve knowledge on current movement behaviour, compare Figure 2.

However, the transmission of these individual movement behaviour still poses
privacy risks [7]. Even the access by third parties corrupts individual privacy as
recent disclosures on the NSA PRISM program reveal [8]. The devices monitor
daily behaviour and thus reveal working place and hours, the place where we spent
the night and other locations indicating information on sensitive subjects as health,
religion, political opinions, sexual orientation, etc. Thus, the transferred episodic
movement data may even lead to re-identifications.

The problem we thus focus is the protection of the individual histogram in such
a data stream of locally aggregated mobility events. The adversary model is a cor-
rupted server that utilizes the received individual histogram for inferences on the
identities and other sensitive data.

Existing methods either act on the network layer [4] or inspired by the differential
privacy paradigm they add random noise [9]. The work in [10] denotes a protocol
for secure aggregation among multiple parties, but their algorithm requires extensive
communication among the parties and is infeasible in the considered crowd sourc-
ing (i.e. single server) scenario, also their encryption can be broken after several
computation cycles.

Fig. 1 Centralized Mobility Data Analyis



DRAFT

Privacy Preserving Centralized Counting of Moving Objects 3

Fig. 2 Aggregation of Distributed Mobility Data Streams.

In contrast, our approach [11] bases on homomorphic crypto systems [12]. These
are systems where the decryption of several multiplied encrypted values reveals the
sum of the original messages. Similarly to the RSA algorithm [13], the system,
based on [14], uses one-way encryption functions to protect the messages. Thus a
public key is used for encryption and a secret private key will be used for decryption.
We share the secret key among the clients in the network using Shamir’s secret
sharing scheme [15]. The temporal entanglement of the messages is prevented using
a one-way hash as in [16].

The paper proceeds with a detailed discussion of latest work that tackle the de-
scribed problem. Afterwards our approach is presented in conjunction with prelim-
inaries on crypto systems. However, our approach poses new requirements to the
architecture from Figure 2, which are briefly discussed afterwards. We conclude
with a discussion of our achievements and an outlook on future research.

2 Related Work

The problem to protect individual privacy in a distributed scenario with an untrusted
server receives increasing importance with the spread of Big Data architectures and
the wide availability of massive mobility data streams. Thus, the problem is subject
of many recent publications.

The work in [17] computes k-anonymity and assumes a trusted server. The work
from [4] tries to solve the un-trusted server problem by introduction of an obfusca-
tion layer in the network communication, see Figure 3. But individual location data
is identifying, even if it is aggregated in space-time compounds [18]. Therefore, this
work still delivers the vulnerable data to the server.
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Recently, differential privacy was applied to the problem in [9]. Originated in
database theory, differential privacy implies that adding or deleting a single record
to a database does not significantly affect the answer to a query [19]. The work in [9]
follows the common method to achieve differential privacy by adding Laplace noise
(with the probability density function Lap(µ ,λ ) = p(x|µ ,λ ) = 1

2λ e−|x−µ|/λ , where
µ is set to zero and λ = 1/ε) to every flow value in the vector, as proposed in [19],
compare Figure 4.

However, for cell counts differential privacy is known to provide strange be-
haviour, especially if large number of cells are zero [20]. Moreover, movement of-
ten is a routine behaviour [21] and within their considered time interval most likely
similar counts are produced for every person [22], this offers a chance to extract the
mean and thus the correct value of the distribution within a stream environment [23]
as the noise is sampled from Lap(0,1/ε) instead of sampling from Lap(0,m/ε),
where m denotes the expected number of queries. Additionally, movement is not
random, and thus the frequencies in the vector are not independent, but correlate.
Thus, combination of various noisy replies may be utilized to reveal the true distri-
butions.

In contrast, our approach based on homomorphic cryptology in conjunction with
a shared key ensures that individual data may not be accessed by the server but only
aggregates of at least k people can be used, Since k may equal the number of clients,
no data on the individual persons need to be revealed.

3 Proposed Cryptographic Approach

In contrast to previously described approaches our method (1) encrypts the values
of the histogram, (2) communicates these ciphertexts to the server, (3) aggregates

Fig. 3 Obfuscated Communication in the Distributed Monitoring Scenario [4].
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Fig. 4 Differential Privacy for the Distributed Monitoring Scenario [9].

Fig. 5 Proposed Privacy Preserving Aggregation of Distributed Mobility Data Streams.

the ciphertexts and finally (4) decrypts the result, see an overview in Figure 5. The
process utilizes asymmetric cryptography methods using two separate keys: one for
encryption and another one for decryption. The utilization of a homomorphic crypto
system in conjunction with Shamir’s secret sharing guarantees that the individual
messages can not be restored, but their sum.

As our method bases on the RSA-method [13], homomorphic crypto systems
[12,14], Shamir’s secret sharing [15] and the work on hash chains, described in [16],
we proceed with a brief primer and describe our method afterwards.
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3.1 RSA Algorithm

The RSA-algorithm [13] is an asymmetric crypto system. The system bases on two
keys, a private key which is used for decryption and a public key used for encryption.
Whilst the public key can be shared with multiple parties, the private key is the secret
of the receiver, and may hardly be computed from the public key.

The RSA method uses one-way functions. These are functions which are easy to
compute in one direction but difficult to reverse. A simple metaphor of this function
is a phone book: While it is easy to derive the call number of a particular person, it
is hard to look up the name given a phone number.

Preliminary for understanding is the notion of multiplicative inverse b of a num-
ber a, which is defined as a · b = 1 mod m. This inverse just exists, if m and a are
co-prime, i.e. gcd(m,a) = 1.

Consider a communication among the client who wants to send a message to
the server. In this case, the system works as follows. In a key generation process,
the server chooses two different primes p and q and computes n = pq and m =
(p− 1)(q− 1). Furthermore, the server chooses a number a which is co-prime to
m. The public key, created by the server, then denotes as pk = (n,a). The server
computes the multiplicative inverse b = a−1 mod m of a, which is the secret private
key.
Encryption:
The client has a message x, with x < m. He sends the ciphertext c, computed as

E(x, pk) = xa mod n . (1)

Decryption:
The server decrypts the message and restores the plaintext by computing

x = D(c) = cb mod n . (2)

The system is secure, as knowledge of n does not reveal p and q, since factorization
is in NP [24].

3.2 Homomorphic Crypto Systems

A public key encryption scheme (E,D), where E and D are algorithms for en-
cryption and decryption, is homomorphic when it meets the condition D(E(m1) ·
E(m2)) = m1 +m2 Our approach bases on the generalisation of Paillier’s public-
key system [12], introduced in [14]. Their crypto system uses computations modulo
ns+1, with n being the RSA modulus and s a natural number. By setting s = 1 Pail-
lier’s scheme is a special case [12]. If n = pq with p and q being odd primes, then
the multiplicative group Z∗

ns+1 is a direct product of G×H, where G is of cyclic
order ns and H is isomorphic to Z∗

n. Thus, Ḡ = Z∗
ns+1/H is cyclic of order ns. For
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an arbitrary element a ∈ Z∗
ns+1 ā = aH denotes the element represented by a in the

factor group Ḡ.
Choose g ∈ Z∗

ns+1 such that g = (1 + n) jx mod ns+1 for known j relatively
prime to n and x ∈ H. Let λ be the least common multiplier of p− 1 and p− 1,
λ := lcm(p− 1,q− 1). Choose d by the Chinese Remainder Theorem, such that
d mod n ∈ Z∗

n and d = 0 mod λ .
The public key then is n,g whilst the secret key is d.

Encryption:
The plaintext m is element of Zns . With a plaintext m we choose at random r ∈Z∗

ns+1 .
The ciphertext E(m,r) computes as:

E(m,r) = gmrns
mod ns+1 . (3)

Decryption:
For the ciphertext c compute cd mod ns+1. If c = E(m,r) this results in

cd = (gmrns
)d = E(m,r)

= ((1+n) jmxirns
)d

= (1+n) jmd mod ns
(xmrns

)d mod λ

= (1+n) jmd mod ns
. (4)

In [14] an algorithm is proposed to compute jmd mod ns. Their method bases on a
function L(b) = (b−1)/n which ensures that

L((1+n)i mod ns+1) = (i+
(

i
2

)
n+ . . .+

(
i
s

)
ns+1) mod ns . (5)

The basic idea of their algorithm is to compute the value iteratively in a loop by
increasing s, as L(1 + n)i mod n2 = i mod n. For convenience, their algorithm is
cited in Algorithm 1. With the same method computed for g instead of c the value
jd mod ns is computed. The plaintext then is:

( jmd) · ( jd)−1 = m mod ns . (6)

The crypto system is additively homomorphic. As example consider two mes-
sages m1 and m2 which are encrypted using the same public key pk such that c1 =
E(s, pk)(m1,r1) and c2 = E(s, pk)(m2,r2) then c1c2 = gm1 gm2 rns

1 rns

2 = gm1+m2 rns
so

c1c2 = E(s, pk)(m1 +m2,r).

3.3 Shamir’s Secret Sharing

The work presented in [15] discusses how to distribute a secret value d among n
parties, such that at least k parties are required for restoring the secret. The idea uti-
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Algorithm 1 DAMGARD JURIK ALGORITHM [14]
1: i:=0
2: for j := 1 to s do
3: t1 := L(a mod n j+1)
4: t2 := i
5: for k := 2 to j do
6: i := i−1
7: t2 := t2 · i mod n j

8: t1 := t1 − t2·nk−1

k! mod n j

9: end for
10: i := t1
11: end for

lizes a polynomial function f (x) = ∑k−1
i=0 aixi,with a0 = d, and distributes the values

f (i) to the parties. In case k of these values are commonly known, the polynomial
f (0) can be restored.

The advantage of this method is that the shared parts not larger than the original
data. By some deploying strategies of the parts hierarchical encryption protocols are
also possible.

3.4 Hash Chain

The work in [16] describes a method for authentication with temporally changing
password messages. The passwords series are created in advance using a crypto-
graphic hash function which is a one-way function F(x). They are created as fol-
lows Fn(x) = F(Fn−1(x)), where x is a password seed. The passwords are used in
reversed order. Thus, the server stores the last value that the client sent, Fn(x), and
proves correctness of the new value Fn−1(x) by verification of Fn(x) = F(Fn−1(x)).
Afterwards the server stores the latest received value for the next check. As F(·) is
a one-way function, the server may not pre-compute next password.

3.5 Putting Things Together

Our cryptographic system follows the protocol of the homomorphic crypto system in
[14]. Consider communication among w clients with a single server. Similar to [14]
key generation starts with two primes p and q which are composed as p = 2p′+ 1
and q = 2q′ + 1, where p′ and q′ are also primes but different from p and q. The
RSA modulus n is set to n = pq and m = p′q′. With some decision for s > 0 the
plaintext space becomes Zns . Next, d is chosen such that d = 0 mod m and d =
1 mod ns. Now, we use Shamir’s secret sharing scheme [15] to generate the private
key shares of d to be divided among the clients. Thus, we apply the polynomial
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f (X) =∑w
i=0 aiX i mod l, by picking ai for (0< i≤w) as random values from 0, . . . , l

and a0 = d, l is a prime with ns+1 < l. We choose g as g = n+1. The secret share
of d for the i’th client will be si = f (i). A verification key vi = v∆si mod ns+1 is
associated with each client i. The public key then becomes (n,s, l) and s1, . . . ,sw is
a set of private key shares.
Encryption:
The plaintext of the ith client m′

i, which is element of Zns , is multiplied with the
one-way hash function Fn = F(Fn−1(a)) of a commonly known seed a. Thus the
plaintext for the encryption results as mi := m′

iF
n. Given this plaintext mi we choose

at random r ∈ Z∗
ns+1 . The ciphertext E(mi,r) computes as:

E(mi,r) = gmi rns
mod ns+1 . (7)

The client i then communicates c2∆si
i , with∆ = l! [14].

Decryption:
The server can verify that the client raised si in the encryption step by testing for
logc4

i
(c2

i ) = logv(vi). After the required k number of shares S arrived. They can be
combined to [14]:

c′ = ∏
i∈S

c
2λ S

0,i
i mod ns+1 , where (8)

λ S
0,i = ∆ ∏

i′∈S\i

−i
i− i′

∈ Z .

Thus, the value of c′ has the form c′ = (∏i∈S ci)
4∆ 2 f (0) = (∏i∈S ci)

4∆ 2d . As
4∆ 2d = 0 mod λ and 4∆ 2d = 4∆ 2 mod ns, c′ = (1 + n)4∆ 2 ∑i∈S mi mod ns+1. The
desired plaintext ∑i∈S mi can be obtained by previously introduced algorithm and
succeeding multiplication with (4∆ 2)−1 mod ns. The original plaintext can be com-
puted by dividing the resulting sum by Fn. This ensures that previous messages may
not be used for analysis of current messages. The homomorphic property of the sys-
tem is directly used, and bases on the work presented in [14].
Security:
The security of the crypto system is based on the decisional composite residuos-
ity assumption already used by [12]. The assumption states that given a composite
n and an integer z it is hard to decide whether z is a n-residue (i.e. a n-th power)
modulo n2, i.e. whether it exists an y with z = yn mod n2 .

4 Consequences for the Architecture

As a consequence of our method the keys need to be distributed among the commu-
nicating parties: the clients and the server. This may not be done by the server, but
has to be performed by a (commonly) trusted authority (TA). Once the keys are dis-
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tributed, the communication channel to this TA can be closed. Thus, no vulnerable
data reaches this third party.

5 Discussion

The hereby presented method overcomes limitations of related work. In addition,
our approach may be combined with the methods presented in [9]. Thus, the trans-
mitted histograms can be obfuscated by Laplacian noise [9]. On the other hand
transmission may not be obscured by anonymous messages [4] since the identifier
of the clients is required for verification of the transmitted messages and reconstruc-
tion of the aggregated plaintext.

However, our method assumes that the space covered by individual movements
overlaps. If this assumption does not hold, e.g. with persons from different cities,
the privacy of each individual is not guaranteed [17]. An approach to overcome this
limitation is by sending messages to the server just if the according entry in the
histogram is at least one (i.e. the person was at least once at this location or used
at least once the movement pattern). This ensures that the server may just decode
the aggregated histogram if a sufficient number of people sent their messages and
thus have been there. On the other hand, then the transmission of the message itself
contains information on a person’s movement behaviour. Thus, future studies should
find a message encoding of a zero which does not allow to compute the aggregated
sum but passes all verification steps of the server.

Additionally, implementation of this algorithm in heterogeneous distributed envi-
ronments is essential work in progress in extension of [25]. The streams-framework
[26] offers a great platform, as it already contains many methods for data preprocess-
ing and data mining in streams [27]. As a main advantage it may run standalone on
many operating systems (Linux, Windows, iOS) and embedded devices (Android)
and also runs on top of the storm-framework1.
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