Dynamic Route Planning with Real-Time Traffic

Predictions™

Thomas Liebig!*, Nico Piatkowski*,
Christian Bockermann*, Katharina Morik*

TU Dortmund University, Dortmund, Germany

Abstract

Situation aware route planning gathers increasing interest as cities become
crowded and jammed. We present a system for individual trip planning
that incorporates future traffic hazards in routing. Future traffic conditions
are computed by a Spatio-Temporal Random Field based on a stream of
sensor readings. In addition, our approach estimates traffic flow in areas with
low sensor coverage using a Gaussian Process Regression. The conditioning
of spatial regression on intermediate predictions of a discrete probabilistic
graphical model allows to incorporate historical data, streamed online data
and a rich dependency structure at the same time. We demonstrate the
system with a real-world use-case from Dublin city, Ireland.

Keywords:
trip planning, real-time traffic model, traffic flow estimation

1. Introduction

The incentive for the creation of smart cities is the improvement of living
quality and performance of the city. This is often accompanied with various
mobile phone apps or web services to bring new services to the people of

*Extended resubmission of [1].
*{firstname.lastname } @tu-dortmund.de
LCorresponding Author:
thomas.liebig@tu-dortmund.de
Tel: +49 231-755 8257

Preprint submitted to Information Systems November 30, 2015



a city — advertising events, spreading city information or guiding people to
their destinations by providing smart trip planning based on the city’s spirit.

With the unpleasant trend of growing congestion in modern urban areas,
smart route planing becomes an essential service in the smart city develop-
ment. Existing trip planning systems consider current traffic hazards and
historical speed profiles which are recorded by personal position traces and
mobile phone network data [2].

The fast moving traffic situations in urban areas demand for a thorough
routing that incorporates as fresh information about the city’s infrastructure
as possible. This present work details and evaluates an approach to situation
aware trip planning [1] that incorporates real time information gained from
smart city sensors and combines this data with a model for estimating future
traffic situations for route calculation. The proposed system provides three
components: (1) an interactive web-based user interface that is based on the
popular OpenTripPlanner project [3]. The web interface allows for users to
specify start and target location and triggers the route planning and pro-
vides a REST-ful service (REpresentation State Transfer, introduced in [4])
interface to integrate such services into mobile applications. (2) A real-time
backend engine, based on the streams framework [5], which provides data
stream processing for various types of data. We provide input adapters for
streams to read and process SCATS data [6] emitted from automatic traffic
loops (city sensors). This allows us to maintain an up-to-date view of the
city’s current traffic state. (3) A sophisticated dynamic traffic model that
is integrated into the backend stream engine and which provides traffic flow
estimation at unobserved locations at future times.

The combination of these components is a trip planner that incorporates
the latest traffic state information as well as a fine-grained future traffic flow
estimation for urban trip planning. We test our trip planner in a use case
scenario in the city of Dublin. The city is amongst the most jammed cities
in Europe The city holds about 966 SCATS sensors, each providing current
traffic flow and vehicle speed at the sensor location.

The paper is structured as follows. In the second section we describe the
general architecture of the presented system regarding the input and output
of the trip planner, the data analysis and the stream processing connecting
middleware. The third section deals with the application of our proposed trip
planner to a use case in Dublin, Ireland. In the fourth section we provide
a discussion of the work together with future directions. The fifth section
presents related work.



2. General Architecture

We give an overview of the system developed to address the veracity,
velocity and sparsity problems of urban traffic management. The system has
been developed as part of the INSIGHT project. This section describes the
input and output of the system, the individual components that perform the
data analysis, and the stream processing connecting middleware.

2.1. System Components

As already noted in the introduction, we built the system aiming real time
streaming capabilities. Based on the streams framework, the core engine is
a data flow graph that models the data stream processing of the incoming
SCATS data. This graph can easily be defined by means of the streams XML
configuration language and features the integration of custom components
directly into the data flow graph. As can be seen in Figure 1, this data
flow graph contains the SCATS data source as well as several nodes that
represent preprocessing operations. A crucial component within that stream
processing is our Spatio-Temporal Random Field (STRF) implementation?,
which is used in combination with the sensor readings to provide a model for
traffic flow prediction.

With the service layer API provided by streams, we export the access to
the traffic prediction model towards the OpenTripPlanner component. The
OpenTripPlanner provides the interface to let the user specify queries for
route planning. Based on a given query (v, w) with a starting location v and
a destination w, it computes the optimal route v — pg...pr — w based on
traffic costs. Here we plug in a cost-model for the routing that is based on
the traffic flow estimation and the current city infrastructure status. This
cost-model is queried by OpenTripPlanner using the service layer API.

2.2. Traffic Model

The key component of our system is the traffic model. It combines two
machine learning methods in a novel way, in order to achieve traffic flow
predictions for nearly arbitrary locations and points in time. This traffic
model addresses multiple facets of the trip planning problem:

2The C++ implementation of STRF and the JNI interface can be found at: http:
//sfb876.tu-dortmund.de/strf



SCATS Data Preprocessing TrEthfg:ng;IZEie\

Data Stream I\

Traffic Prediction
|' Service

Real time Engine

Web Interface :
(OpenTripPlanner) e

Figure 1: A general overview of the components of the predictive trip planning system.
The real time engine continuously computes traffic condition forecasts and exports the
prediction service to the OpenTripPlanner. Best viewed in color.

e sparsity of stationary sensor readings among the city,
e velocity of real-time traffic readings and computation, and
e veracity of future traffic flow predictions.

Based on a stream of observed sensor measurements, a Spatio-Temporal Ran-
dom Field [7] estimates the future sensor values, whereas values for non-
sensor locations are estimated using Gaussian Processes [8]. To the best of
the authors knowledge, streamed STRF+GP prediction has not been con-
sidered until now and is therefore a novel method for traffic modelling.

Spatio-Temporal Random Field for Flow Prediction

In order to model the temporal dynamics of the traffic flow as measured
by the SCATS sensors (Figure 3), a Spatio-Temporal Random Field is con-
structed. The intuition behind STRF is based on sequential probabilistic
graphical models, also known as linear chains, which are popular in the
natural language processing community. There, consecutive words or cor-
responding word features are connected to a sequence of labels that reflects
an underlying domain of interest like entities or part of speech tags. If a
sensor network, represented by a spatial graph Gy = (V, Ey), is considered
that generates measurements over space and time, it is appealing to identify



the joint measurement of all sensors with a single word in a sentence and
connect those structures to form a temporal chain G; — Gy —--- — G7r. Each
part Gy = (V;, E}) of the temporal chain replicates the given spatial graph
G, which represents the underlying physical placement of sensors, i.e., the
spatial structure of random variables that does not change over time. The
parts are connected by a set of spatio-temporal edges E;_14 C Vo1 X V;
for t =2,...,T and Ey; = 0, that represent dependencies between adjacent
snapshot graphs G;_; and G, assuming a Markov property among snapshots,
so that Ep.y, = () whenever h > 1 for any ¢. The resulting spatio-temporal
graph G, consists of the snapshot graphs G; stacked in order for time frames
t =1,2,...,T and the temporal edges connecting them: G := (V| E) for
Vi=UL,V,and E:= UL {E,UE,_1.}.

Finally, G is used to induce a generative probabilistic graphical model
that allows us to predict (an approximation to) each sensors maximum-a-
posterior (MAP) state as well as the corresponding marginal probabilities.
The full joint probability mass function is given by

po(X = @) = ﬁ [Te@ [ Com@).
veV (vw)eE
Here, X represents the random state of all sensors at all T points in time
and x is a particular assignment to X. It is assumed that each sensor
emits a discrete value from a finite set X'. By construction, a single vertex
v corresponds to a single SCATS sensor s at a fixed point in time ¢. The
potential function of an STRF has a special form that obeys the smooth
temporal dynamics inherent in spatio-temporal data.

! 1
Po(T) = ¢s(t)(w) = €xp <Z mzs,z‘, ¢s(t)(w)>

The STRF is therefore parametrized by the vectors Z, ; that store one weight
for each of the |X'| possible values for each sensor s and point in time 1 <
i < T. The function ¢, generates an indicator vector that contains exactly
one 1 at the position of the state that is assigned to sensor s at time ¢ in
x and zero otherwise. For a given data set, the parameters Z are fitted by
regularized maximume-likelihood estimation.

As soon as the parameters are learned from the data, predictions can be
computed via MAP estimation,

& = arg wg\lggxpe(wvw | zv), (1)

5



where U C V is a set of spatio-temporal vertices with known values. The
nodes in U are termed observed nodes. Notice that U = () is a perfectly valid
choice that yields the most probable state for each node, given no observed
nodes. To compute this quantity, the sum-product algorithm [9] is applied,
often referred to as loopy belief propagation (LBP). Although LBP computes
only approximate marginals and therefore MAP estimation by LBP may not
be perfect [10], it suffices our purpose.

Gaussian Process Model for Flow Imputation

Based on the discrete estimates of the STRF', we model the junction based
traffic flow values within a Gaussian Process regression framework, similar
to the approach in [8]. In the traffic graph each junction corresponds to
one vertex. To each vertex v; in the graph, we introduce a latent variable
fi which represents the true traffic flow at v;. The observed traffic flow
values are conditioned on the latent function values with Gaussian noise ¢;:
Y; = fz‘—f—Ei,EZ‘ NN(O,U2) .

We assume that the random vector of all latent function values follows
a Gaussian Process (GP), and in turn, any finite set of function values f =
firi=1,..., M has a multivariate Gaussian distribution with mean and
covariances computed with mean and covariance functions of the GP. The
multivariate Gaussian prior distribution of the function values f is written as
P(f|X) = N(0, K) , where K is the so-called kernel and denotes the M x M
covariance matrix, zero mean is assumed without loss of generality.

For traffic flow values at unmeasured locations u, the predictive distribu-
tion can be computed as follows. Based on the property of GP, the vector of
observed traffic flows (v at locations —u) and unobserved traffic flows (f,)
follows a Gaussian distribution

y K—u—u"'o_zj f(—uu
~ I~ o 2
et ) e

where K’u,,u are the corresponding entries of K between the unobserved
vertices u and observed ones —u. K = f(u,u, and K _uu are defined equiv-
alently. [ is an identity matrix of size | — u|.

Finally the conditional distribution of the unobserved traffic flows are still
Gaussian with the mean m and the covariance matrix >: m = f(u,,u(f(,u,,u+
PNy, N =Ky — Ky oKy + 021V Ky .



Since the latent variables f are linked together in a graph G, it is obvious
that the covariances are closely related to the network structure: the variables
are highly correlated if they are adjacent in G, and vice versa. Therefore we
can employ graph kernels [11] to denote the covariance functions k(z;, z;)
among the locations z; and x;, and thus the covariance matrix.

The work in [8, 12] describes methods to incorporate knowledge on pre-
ferred routes in the kernel matrix. Lacking this information, we decide for the
commonly used regularized Laplacian kernel function K = [B(L+1/a?)] -
where v and 3 are hyperparameters. L denotes the combinatorial Laplacian,
which is computed as L = D — A, where A denotes the adjacency matrix of
the graph G. D is a diagonal matrix with entries d;; = > ;A

2.3. OpenTripPlanner

OpenTripPlanner (OTP) is an open source initiative for route calcula-
tion. The traffic network for route calculation is generated using data from
OpenStreetMap and (eventually) public transport schedules. Thus, Open-
TripPlanner allows route calculation for multiple modes of transportation
including walking, bicycling, transit or its combinations. However, vehicular
routing is possible, but for data quality reasons in OpenStreetMap concern-
ing the turning restrictions [13] it is not advisable. The default routing al-
gorithm in OTP is the A* algorithm which utilizes a cost-heuristic to prune
the Dijkstra search.

OpenTripPlanner consists of two components an API and a web appli-
cation which interfaces the API using RESTful services. The API loads the
traffic network graph, and calculates the routes. The web application pro-
vides an interactive browser based user interface with a map view. A user
of the trip planner can form a trip request by selecting a start and a target
location on the map.

2.4. The streams Framework

The need for real time capabilities in today’s data processing and the
steady decrease of latency from data acquisition to knowledge extraction or
information use from that data led to a growing demand for general purpose
stream processing environments. Several such frameworks have emerged —
Storm, Kafka or Yahoo!’s S4 engine are among the most popular open-source
approaches to streaming data. They all feature slightly different APIs and
come with slightly different philosophies. Focusing on a more middle-layer
approach is the streams framework proposed in [5], which aims at providing

7



a light-weight high-level abstraction for defining data flow networks in an
easy-to-use XML configuration. It comes with its own execution engine,
but also features the transparent execution of data flow graphs on existing
engines such as Storm. We base our decision for the streams framework on
its recent applications that highlight its high throughput capabilities [14] and
the built-in data mining operators [15].

SCATS Data Processing with streams

Within the streams framework, a data source is represented as a sequence
of data items, which in turn are sets of key-value pairs, i.e. event attributes
and their values. Processes within a streams data flow graph consume data
items from streams and apply functions onto the data. The data flow graph
for manipulation, analysis and filtering of the streams is formulated in an
XML-based language that streams provides. A sample XML configuration is
given in Figure 2.

<container>
<stream id="scats:data" url="http://..." class="eu.insight.input.ScatsStream" />

<process input="scats:data">
<!-- .. custom functions .. -->
<eu.insight.data.DataNormalization />
<eu.insight.traffic.TrafficEstimator id="predictor" />
</process>
</container>

Figure 2: XML representation of a streams container with a source for SCATS data and
a process that applies a normalization to each data item and then forwards it to a traffic
estimation processor.

The process setup of Figure 2 defines a single data source that provides
a stream of SCATS sensor data. A process is attached to this source and
continuously reads items from that source. For each of the data item, it
applies a sequence of custom functions (so called processors) that reflect
data transformations or other actions on the items. In the example above,
we include a SCATS specific DataNormalization step as well as our custom
TrafficEstimator implementation directly into the data flow graph.

Service Level API
The streams runtime provides a simple RMI-based service invocation of
data flow components that do provide remote services. The TrafficEstimator



defines such a remote interface and is automatically registered as a service
with identifier “predictor”. This allows service methods of that estimator to
be asynchronously called from outside the data flow graph, i.e. from within
our modified OpenTripPlanner component.

The service method that is defined by the TrafficEstimator is exactly
the cost-retrieval function that is required within the A* algorithm of the
OpenTripPlanner:

getCost(z,y,t)

where x and y are the longitude and latitude of the location and t is the time
at which the traffic flow for (z,y) shall be predicted.

3. Empirical Evaluation

In this section we present the application of our proposed trip planner to
a use case in Dublin, Ireland. We used real data streams obtained from the
SCATS sensors of Dublin city. The stream was collected between January
and April 2013 and comprises ~ 9GB of data. The SCATS dataset includes
966 sensors, see Figure 3 for their spatial distribution among the traffic net-
work. SCATS sensors transmit information on traffic flow every six minutes.
The data set is publicly available?.

For the experiments in Dublin, the traffic network is generated based on
the OpenStreetMap* data. In the preprocessing step the network is restricted
to a bounding window of the city size. Next, every street is split at any
junction in order to retrieve street segments. In result we obtain a graph
that represents the traffic network. The SCATS locations are mapped to
their nearest neighbours within this street network.

In the preprocessing step the sensor readings are aggregated within fixed
time intervals. We tested various intervals and decided for 30 minutes, as
lower aggregates are too noisy, caused by traffic lights and sensor fidelity.

The spatial graph G, that is required for the STRF is constructed as
k-nearest-neighbor (kNN) graph of the SCATS sensor locations. In what
follows, a 7NN graph is used, since a smaller k induces graphs with large
disconnected components and a larger k£ leads to more complex models with-
out improving the performance of the method. The fact that no information

3Dublin SCATS data: http://www.dublinked.ie
4OpenStreetMap: http://www.openstreetmap.org



Figure 3: Locations of SCATS sensors (marked by red dots) within Dublin, Ireland. Best
viewed in color.

about the actual street network is used to build Gy might seem counterintu-
itive, but undirected graphical models like STRF do not use or rely on any
notion of flow. They rather make use of conditional independence, i.e. the
state of any node v can be computed if the states of its neighboring nodes are
known. Thus, the kNN graph can capture long-distance dependencies that
are not represented in the actual street network connectivity. The maximum
traffic flow value that is measured by each SCATS sensor in each 30-minutes-
window is discretized into one of 6 consecutive intervals. A separate STRF
model for each day of the week is constructed and each day is further par-
titioned into 48 snapshot graphs, since we can divide a day into 48 blocks
of 30 minutes length. The model parameters are estimated on SCATS data
between January 1 and March 31 2013 and evaluated using data from April
2013.

The evaluation data is streamed as observed nodes into the STRF which
computes a new conditioned MAP prediction (Equation 1) for all unobserved
vertices of the spatio-temporal graph GG whenever time proceeds to the next
temporal snapshot. The discrete predictions are then de-discretized by tak-
ing the mean of the bounds of the corresponding intervals and subsequently
forwarded to the Gaussian Process which uses these predictions to predict
values at non-sensor locations. Notice that although the discretization with
subsequent de-discretization seems inconvenient at a first glance, it allows
the STRF to model any non-linear temporal dynamics of the sensor mea-

10



,.! . . !_v ey - e i iy I g

Figure 4: Results of route calculations for fixed start and target at different timestamps
(from left to right: 7:00, 8:00, 8:30). Best viewed in color.

surements, i.e. the flow at a fixed sensor might change instantly if the sensor
is located close to a factory at shift changeover.

Application of Gaussian Processes requires a joint multivariate Gaussian
distribution among the considered random variables. In our case, these ran-
dom variables denote the traffic flow per junction. Literature on traffic low
theory [16, 17] tested traffic flow distributions and supports a hypothesis for
a joint lognormal distribution. We test our dataset for this hypothesis. Thus,
we apply the Mardia [18] normality test to the preprocessed data set. The
test checks multivariate skewness and kurtosis. We apply the implementation
of the Mardia test contained in the R package MVN [19]. The tests confirmed
the hypothesis that the recorded traffic flow (obtained from the SCATS sys-
tem) is lognormal distributed. Thus, application of Gaussian Processes to
log-transformed traffic flow values is possible. The hyper-parameters for the
GP are chosen in advance using a grid search. Best performance was achieved
with @ = /2 and = /2. The STRF provides complete knowledge on future
sensor readings which is necessary for our GP. As the STRF model performs
well [7], we set the noise among the sensor data in our GP to a small vari-
ance of 0.0001. For easy tractability, we set up the GP to model about 5000
locations among the city of Dublin.

The OpenTripPlanner creates a query for the costs at a particular coor-
dinate in space-time. The query is transmitted from the route calculation to
the traffic model. There, the query is matched to the discrete space. The
spatial coordinates are encoded in the WGS84 reference system. To avoid
precision problems during the matching between the components, the spatial
coordinate is matched with a nearest neighbour method using a KDTree data
structure The nearest neighbor matching offers also the possibility to query
costs for arbitrary locations. The timestamp of the query is discretized to
one of the 48 bins we applied in the STRF.

We apply our trip planner for a particular Monday in data set (8th April

11



2013) and compute routes from a fixed start to a fixed target at different
time stamps. Figure 4 shows that different routes are calculated depending
on the traffic situation. Congested street segments are avoided and different
routes are suggested.

4. Quantitative Assessment

The quality of the routing is naturally hard to evaluate. A possible solu-
tion would be to travel along the suggested route and to compare travel time
against the uninformed shortest or fastest route. However, the representativ-
ity of any randomly drawn start and goal points would be controvertible and
for meaningful results multiple start/goal pairs needed to be evaluated si-
multaneously. Due to these shortcomings, we perform, instead, a component
wise evaluation.

The performance of the STRF is depicted in a contingency table. The
upper part of Table 1 shows the confusion matrix for the STRF trained on
time slices of 30 minutes. Most observations are classified correctly, and
therefore counted on the diagonal of the matrix. Nevertheless, changing the
discretization intervals of the traffic flow may increase the performance, this
is subject to future work.

Table 1: Traffic Flow Prediction results for STRF, time slices of 30 min.

Global STRF model, 1 day, acc. 78.11%
true/pred. 0 1-5 6-20 21-30 31-60 61-485  precision
0 3.09% 0.19% 0.04% 0.02% 0.01% 0.00% 94.30%
1-5 0.01% 2.32% 1.83% 0.01% 0.00% 0.00% 55.60%
6-20 0.34% 0.57%  44.71% 7.37% 0.31% 0.09% 83.80%
21-30 0.12% 0.00% 4.49%  20.71% 2.64% 0.05% 73.90%
31-60 0.16% 0.00% 0.22% 3.28% 7.15% 0.11% 65.50%
61-485 0.00% 0.00% 0.06% 0.01% 0.05% 0.13% 53.00%
recall 83.30% 77.10% 87.10% 65.90% 70.50% 34.00%

Evaluation of the Gaussian Process Regression is difficult with the current
dataset, as it is only used for spatial interpolation and every sensor location
supports the interpolation. However, due to its smoothing behaviour it does
not have a strong impact. For its quantitative leave-one-out assessment we
refer to [12].

As our routing component multiplies the cost of an edge by its predicted
OCCUPANCY OCCpreq, the worst detour could occur if the area of prediction

12



is avoided and a surrounding path is computed. However, the length of
this detour is bound by the occupancy dependent factor occpreq. And the
spatio-temporal cost gain of using our recommendation in comparison to an
uninformed path is at most 1/occyreq. In future work we will study how to
provide different route recommendations and balance the load of the traffic
to prevent occurrence of traffic jams as result of the predictions.

5. Related Work

Previous sections already discussed related approaches. Here, we present
briefly recent work on dynamic cost estimation for trip planning in smart
cities. Recent work [20] predicts the travel time of routes. As their work
evaluates a particular predefined route based on recorded GPS traces, it has
a related but different scope. In contrast to [21], our approach combines
the STRF with a GP for estimation of costs at unobserved locations. The
approach in [22] addresses travel time forecasts based on the delays in the
public transportation system. Main drawback of their method is that buses
have extra lanes at most junctions and their movement follows a regular pat-
tern. The inclusion of traffic loop readings was motivated in their section on
future work. The dynamic traffic flow estimation is a major problem in traffic
theory. Common approach is the usage of a k-Nearest Neighbour algorithm
which calculates traffic flow estimates as weighted average of the k nearest
observations [23]. In contrast, our approach models future traffic flow values
based on their temporal patterns, correlations and dependencies. Foremost,
our model requires less memory as k-NN which has to store all previously
seen sensor values for continuous traffic flow estimation. Another paper that
compares two prediction models for traffic flow estimation is presented in
[24]. By combining a Gauss Markov Model with a Gaussian Process, their
work provides a faster model which is suitable for near time predictions (as
required for automatic signal control). The model estimates future values
by consecutive application of the model. In contrast, the hereby presented
work estimates all future time slices at once. In result, we built valuable trip
planner application on top of the traffic estimation model and highlighted
its usability. Improvement of the estimation method, and comparison of
estimation accuracy is subject for future work.

13



6. Discussion and Future Work

Within this paper we presented a novel approach for trip planning in
highly congested urban areas. Our approach computes intelligent routes
that avoid traffic hazards in advance. The proposed trip planner consists
of a continuous traffic model based on real-time sensor readings and a web
based user interface. We combined the real-time traffic model and the trip
calculation with a streaming backbone. We applied the trip planner to a
real-world use case in the city of Dublin, Ireland.

Our traffic model combines latest advances in traffic flow estimation. On
the one hand, prediction of future sensor values is performed with a spatio-
temporal random field, which is trained in advance. Based on these estimates,
the traffic flow for unobserved locations is performed by a Gaussian Process
Regression. We successfully applied the Regularized Laplacian Kernel. In
literature, also other kernels have been successfully applied to the problem,
[12, 25]. Exploration of different kernel methods is subject for future research.

Besides the SCATS data also other data sources provide useful informa-
tion for dynamic cost estimation. The integration of bus travel times or user
generated (crowdsourcing and social network) data in our model is possible
by dynamically changing the traffic network (in case of road blockages) or
introducing dynamic weights (in case of a accident or flooding on a street
segment). Future studies need to explore these directions.

7. Acknowledgements

This work is funded by the following projects: EU FP7 INSIGHT (318225);
the Deutsche Forschungsgemeinschaft within the CRC SFB 876 “Providing
Information by Resource-Constrained Data Analysis”, A1 and C1.

[1] T. Liebig, N. Piatkowski, C. Bockermann, K. Morik, Predictive trip
planning - smart routing in smart cities, in: Proceedings of the Work-
shops of the EDBT/ICDT 2014 Joint Conference (EDBT/ICDT 2014),
Athens, Greece, March 28, 2014, Vol. 1133, CEUR-WS.org, 2014, pp.
331-338.

[2] R.-P. Schifer, IQ Routes and HD Traffic: Technology Insights About
Tomtom’s Time-dynamic Navigation Concept, in: Proceedings of the

the 7th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on The Foundations of Software

14



Engineering, ESEC/FSE 09, ACM, New York, NY, USA, 2009, pp.
171-172.

B. McHugh, The opentripplanner project, Tech. Rep. Metro RTO
Grant Final Report, TriMet (August 2011).

URL  http://portlandtransport.com/documents/0TP\%20Final\
%20Report\%20-\%20Metro\%202009-2011\%20RT0\%20Grant . pdf

L. Richardson, S. Ruby, RESTful Web Services, O’Reilly Series, O’Reilly
Media, Incorporated, 2007.
URL http://books.google.de/books?id=XUaErakHsoAC

C. Bockermann, H. Blom, The streams framework, Tech. Rep. 5, TU
Dortmund University (12 2012).

URL http://jwall.org/streams/tr.pdf [Lastaccessed:
28November2013]

SCATS, Sydney Coordinated Adaptive Traffic System, Available:
http://www.scats.com.au/ [Last accessed: 27 June 2013] (2013).

N. Piatkowski, S. Lee, K. Morik, Spatio-temporal random fields: com-
pressible representation and distributed estimation, Machine Learning
93 (1) (2013) 115-139.

T. Liebig, Z. Xu, M. May, S. Wrobel, Pedestrian quantity estimation
with trajectory patterns, in: P. A. Flach, T. Bie, N. Cristianini (Eds.),
Machine Learning and Knowledge Discovery in Databases, Vol. 7524 of
Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2012,
pp. 629-643.

F. R. Kschischang, B. J. Frey, H.-A. Loeliger, Factor graphs and
the sum-product algorithm, IEEE Transactions on Information Theory
47 (2) (2001) 498-519.

U. Heinemann, A. Globerson, What cannot be learned with bethe ap-
proximations, in: Proceedings of the 27th Conference on Uncertainty in
Artificial Intelligence, Barcelona, Spain, 2011.

A. Smola, R. Kondor, Kernels and regularization on graphs, in: Proc.
Conf. on Learning Theory and Kernel Machines, 2003, pp. 144-158.

15



[12]

[13]

[14]

[21]

T. Liebig, Z. Xu, M. May, Incorporating mobility patterns in pedes-
trian quantity estimation and sensor placement, in: J. Nin, D. Villatoro
(Eds.), Citizen in Sensor Networks, Vol. 7685 of Lecture Notes in Com-
puter Science, Springer Berlin Heidelberg, 2013, pp. 67-80.

S. Scheider, J. Possin, Affordance-based individuation of junctions in
open street map, Journal of Spatial Information Science 4 (1) (2012)
31-56.

A. Gal, S. Keren, M. Sondak, M. Weidlich, H. Blom, C. Bockermann,
Grand challenge: The techniball system, in: Proceedings of the Tth
ACM International Conference on Distributed Event-based Systems,
DEBS 13, ACM, New York, NY, USA, 2013, pp. 319-324.

C. Bockermann, H. Blom, Processing Data Streams with the Rapid-
Miner Streams-Plugin, in: Proceedings of the 3rd RapidMiner Commu-
nity Meeting and Conference, 2012.

G. Lay, Handbook of Road Technology, Fourth Edition, taylor & francis,
2009.

G. Davis, estimation theory approach to monitoring and updating av-
erage daily traffic, Tech. Rep. mn/rc 97-05, minnesota department of
transportation, office of research administration (january 1997).

K. V. Mardia, Measures of multivariate skewness and kurtosis with ap-
plications, Biometrika 57 (1970) 519-530.

S. Kormaz, MVN: Multivariate Normality Tests, r package version 1.0
(2013).
URL http://CRAN.R-project.org/package=MVN

Y. Wang, Y. Zheng, Y. Xue, Travel time estimation of a path using
sparse trajectories, in: KDD 2014, ACM, 2014.

URL http://research.microsoft.com/apps/pubs/default.aspx?
1d=217493

B. Yang, C. Guo, C. S. Jensen, Travel cost inference from sparse, spatio

temporally correlated time series using markov models, Proc. VLDB
Endow. 6 (9) (2013) 769-780.

16



22]

[24]

[25]

L. Gasparini, E. Bouillet, F. Calabrese, O. Verscheure, B. O’Brien,
M. O’Donnell, System and analytics for continuously assessing trans-
port systems from sparse and noisy observations: Case study in dublin,
in: Intelligent Transportation Systems (ITSC), 2011 14th International
IEEE Conference on, 2011, pp. 1827-1832.

X. Gong, F. Wang, Three Improvements on KNN-NPR for Traffic Flow
Forecasting, in: Proceedings of the 5th International Conference on
Intelligent Transportation Systems, IEEE Press, 2002, pp. 736-740.
URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
1041310&tag=1

F. Schnitzler, T. Liebig, S. Mannor, K. Morik, Combining a gauss-
markov model and gaussian process for traffic prediction in dublin city
center, in: Proceedings of the Workshop on Mining Urban Data at the
International Conference on Extending Database Technology, 2014, p.
(to appear).

B. Selby, K. M. Kockelman, Spatial prediction of traffic levels in un-
measured locations: applications of universal kriging and geographically
weighted regression, Journal of Transport Geography 29 (2013) 24-32.

17



