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9. Introduction
Proliferation of pervasive devices capturing sensitive data streams, such as 

mobility records, raises concerns about individual privacy. In particular, automatic 
reasoning based on spatio-temporal information can cause disclosure of private 
information. The methods used by spatio-temporal data mining are part of the vast 
subject of artificial intelligence, more precisely of data mining and machine learn-
ing. Historically, the methods for spatio-temporal analysis originate from physics 
(focusing on moving objects), and statistics (focusing on data analysis). With the 
advance of probabilistic learning methods in computer science and artificial intelli-
gence, spatio-temporal data mining itself became a mature science.

We continue this section with prerequisites for understanding spatio-temporal 
methods and continue in the following sections, with an overview on spatio-tem-
poral data mining and privacy aspects of spatio-temporal analysis.

9.1.1.  Time geography

The fundamental relation between space and time was formulated by Min-
kowski1. Whereas space was before considered as a three-dimensional homo-
geneous and isotropic extent defined by Newton2, Minkowski firstly introduces 

1 H. Minkowski, Die Grundgleichungen für die elektromagnetischen Vorgänge in beweg-
ten Körpern, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathema-
tisch-Physikalische Klasse (Berlin) 1908 (1908), pp. 53–111.

2 Newton et al., The mathematical principles of natural philosophy by Sir Isaac Newton 
translated into English by A. Motte to which are added, Newton’s system of the world a short 
comment on, and defence of, the Principia, by W. Emerson; with The laws of the moon’s motion 
according to gravity, by J. Machin, A new ed. carefully rev. and corr. by W. Davis.(Printed for 
H.D. Symond, London, 1803), http://nla.gov.au/nla.cat-vn994402.
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a four-dimensional extrapolation of the prior three-dimensional one. He com-
bines time t with the previously introduced spatial extent X=(x,y,z) (or X=(x-
,y) for two dimensional coordinate systems) by introducing ict as an additional 
dimension, with i²=-1 and c is the maximal speed of light. Thus the sphere that 
a flash of light creates in three dimensional space x²+y²+z²=r² becomes in four 
dimensions:

  x²+y²+z² = r² = c²t²

  x²+y²+z²+(ict)² =0, with i²=-1 .

Fig. 9: Light Cone in Minkowski Space-Time3.

In four dimensions, this equation describes a cone, depicted in Figure 9. Hence 
it is called the light-cone. The coordinates in this Minkowski space (x,y,z,ict) are 
called Minkowski Coordinates whereas (x,y,z,ct) are called Galilei Coordinates4. 

3 Wikimedia Commons, Example of a light cone, by Stib at en.wikipedia http://creative-
commons.org/licenses/by-sa/3.0/)], 2005.

4 E. Schmutzer, Relativitätstheorie– aktuell: ein Beitrag zur Einheit der Physik, 4th ed. 
(Leipzig: Teubner, 1989), p. 180.
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Making the reasonable assumption, that the speed of light is the limit for all speeds, 
a point at (x,y,z,ict) may not be affected by anything except the lower half cone, 
therefore called past. The upper half cone describes its future, compare Figure 9. 
This close relationship between space and time is also expressed in the definition 
of the spatial unit length meter [m].

Definition [meter]: A meter [m] is the distance light passes in 
1/299.792.458~seconds in vacuum5.

Note that this definition implies that the speed of light c is given by 299.792.458 
m/s. Whilst this space still possesses the Euclidian geometry, which describes 
a rectilinear space, later the curvilinear Riemann geometry was considered which 
allows explanation of gravity effects.

However, for most spatial modelling applications, the gravity effects and 
relativistic influences of mass objects are not relevant. Therefore the four-dimen-
sional space-time with rectilinear Euclidian geometry is sufficient for this work. 
Whereas physicists have applied this model since 1908, in 1970 space-time was 
first incorporated in geography using the term Time-Geography6 to visualize and 
analyse the motion of pedestrians. Thus the spatial coordinate system, in geogra-
phy often represented by x,y due to the two-dimensionality of maps, is extended 
by time t as a third dimension. This results in a continuous three-dimensional 
line-visualization of individual movement. In physics it is common to call this 
line a trajectory7. Introducing a maximal speed for the motion of people (simi-
larly to the maximum speed of light above) the transition possibilities between 
two points in (x1,y1,t1) and (x2,y2,t2) result in a so called space-time prism8. This is 
a volume in space-time which is formed by the intersection of the future of point 
(x1,y1,t1) and the past of (x2,y2,t2), compare Figure 10. When projecting this prism 
onto the x,y plane it defines the possible path area.

5 National Institute of Standards and Technology, International System of Units (SI) 
(Gaithersburg: National Institute of Standards / Technology, March 2008), http://physics.nist.
gov/Pubs/SP330/sp330.pdf.

6 T. Hägerstrand, What about people in Regional Science?, Papers in Regional Science 24, 
no. 1 (1970): 6–21, http://dx.doi.org/10.1007/BF01936872.

7 E. Schmutzer, Relativitätstheorie– aktuell : ein Beitrag zur Einheit der Physik…
8 B. Lenntorp, Paths in space-time environments: a time-geographic study of movement pos-

sibilities of individuals, Meddelanden från Lunds universitets geografiska institution (Royal Uni-
versity of Lund, Dept. of Geography, 1976), http://books.google.de/books?id=2UMSAQAAIAAJ.
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Fig. 10: Example of space-time prism representation of movement between two places 
in space-time. The red lines mark that the person spends some time at the left building 
and later on in the right building. The transition in between the two spatio-temporal 
locations is bounded by the space-time prism in the upper part of the picture.

A trajectory of a moving object, which represents its positions in space-time, 
can then be defined as:

Definition [trajectory]: A set of space-time points (x,y,z,t) is called trajectory 
S (or world-line) of a moving object, if for every contained time-stamp t, exactly 
one spatial point (x,y,z) is contained in S (uniqueness) and temporally subsequent 
points are contained in their light-cones (continuity).9

Thus, in a trajectory the spatial component X can be regarded as a function 
of time X=f(t). In contrast to a moving point, the trajectory of a mass object is 
constrained by physical properties such as inertia, impulse, spin and gravity. This 
results in stronger constraints for the continuity of trajectories. Therefore, the tra-
jectory of a mass object can be expected to be smooth, i.e., f(t) is continuously 
differentiable. Recent work on kinetic space-time prisms incorporates the physical 
behaviour of mass objects10.

9 H. Minkowski, Raum und Zeit, Vortrag, Gehalten auf der 80. Natur-Forscher-Versamm-
lung zu Köln am 21. September 1908 (B.G. Teubner, 1909).

10 B. Kuijpers, H. J. Miller & W. Othman, Kinetic space-time prisms, [in:] Proceedings of 
the 19th ACM SIGSPATIAL International Symposium on Advances in Geographic Informa-
tion Systems, ACM-GIS, GIS (ACM, 2011), 162– 170.
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Time is a continuous and linear extent with the second [s] as its unit. Possible 
spatial reference systems for the spatial component of the space-time points are so-
called geo-reference systems, such as WGS8411 which locates any point on earth by 
its ellipsoidal coordinate triple longitude, latitude and altitude. As WGS84 became 
part of Open Geographic Consortium specifications, this geo-reference system is 
widely used. Another often used Cartesian coordinate system is given directly by 
maps, having the x and y axis perpendicular in the plane of a map image (and pos-
sibly the third z axis pointing orthogonally from the map surface).

9.1.2. Digital data representation

Automatic processing of trajectories and analysis of movement both require 
digital data storage. Two possibilities for digital storage of spatial data evolved: 
grid and vector representation. Grid representation aggregates spaces and straight 
contours are approximated by tessellations (see Figure 11), whereas vector repre-
sentation preserves the spatial contours (see Figure 11).

Vectorized data needs less memory and it allows easy integration of additional 
dimensions. In raster space this would imply transition from pixel to voxel-space. 
Furthermore, vector models provide easy mapping of data between various geo-
graphic coordinate systems with different ranges or precision.

Fig. 11: Tessellated Spatial Objects (image credits12).

11 National Imagery and Mapping Agency, Department of Defense World Geodetic System 
1984: its definition and relationships with local geodetic systems, technical report TR8350.2 (St. 
Louis, MO, USA: National Imagery and Mapping Agency, January 2000), http://earth-info.nga.
mil/GandG/publications/tr8350.2/tr8350_2.html.

12 T. Liebig, Spatio -- Temporal Data Mining with Bayesian Networks (Diploma Thesis, 
Chemnitz University of Technology, 2007).
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Primitive spatial vector object types are point, line, area, network and their 
compound13 shown in Figure 12.

Fig. 12: Spatial Vector Objects (image credits14)

For the exchange and storage of spatio-temporal data the Open Geographic 
Consortium defined open file format standards, protocols and interfaces. The most 
popular ones are the Keyhole Markup Language (KML), an XML notation for de-
scription of spatial vector objects in WGS84, and Geographic Markup Language 
(GML) which can model arbitrary geographic data and not just its visualization. The 
interfaces and their associated protocols define the connections between software 
modules or devices. For example, the transmission of sensor readings that are locat-
ed at a specific location should adhere to the Sensor Observation Service Protocol 
(SOS), whereas the transmission of map information from a server to a map-service 
could be either done in vector format (using the Web Feature Service protocol) or in 
raster format. The creation of these open communication standards led to a modular-
ization of previously proprietary (closed) geographical information systems.

9.2. Spatio-temporal data mining

Although not all spatially-related data contain coordinates (e.g. some Twitter 
messages) they mostly contain information on locations or moving objects.

In both dimensions, space and time, data items have limited validity. For ex-
ample, a message containing the weather information at a particular spatio-temporal 
coordinate is invalid in future or at large distance. The GPS information of a moving 
object (e.g. a vehicular position) loses validity immediately after being recorded.

13 N. Bartelme, Geoinformatik: Modelle, Strukturen, Funktionen (Springer, Berlin, 1995),
14 T. Liebig, Spatio -- Temporal Data…
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Thus, analysis models developed on spatio-temporal measurements have to 
incorporate the latest data samples and need to perform in real-time. This does not 
preclude learning from historic data samples in order to compare current situations 
with the past and project it into the future.

For a comprehensive introduction to spatio-temporal data mining we refer to 
the book15, which resulted from the GeoPKDD project funded by the European 
Commission under the Sixth Framework Programme, IST-6FP-014915.

Spatio-temporal data comes in a variety of forms and representations, depending 
on the domain, the observed phenomenon and the observation method. In principle, 
there are three types of spatio-temporal data: spatial time series, events and trajectories.

A spatial time series consists of tuples (attribute, object, time, location).
An event of a particular type eventi is triggered from a spatial time series 

under certain conditions and contains the tuples verifying these conditions (eventi, 
objectn, timen, locationn).

A trajectory is a spatial time series for a particular objecti. It contains the 
location at a given time and is a series of tuples (objecti, timen, locationn). Every 
timestamp timen is contained at most once.

9.2.1.  Frequent patterns

The challenge of frequent pattern mining is the identification of frequently 
co-occurring sets of items or more complex patterns (that describe relations be-
tween space and time). Input items can be elements of spatial time series, events, 
or the tuples of trajectories. Outputs are frequent sets of these items. A common 
algorithm for mining these data sets for frequent item sets is the apriori algorithm 
that generates candidates for frequent item sets as unions of smaller frequent item 
sets. A common parameter for frequent item mining is the minimum support which 
is a threshold to distinguish between frequent and infrequent sets of items. As the 
coordinates in trajectories may be too fine-grained to identify frequently co-visited 
places, the T-pattern algorithm16 extracts spatial regions from the trajectories which 
are frequently visited and returns frequent visit patterns between them.

9.2.2.  Classi�cation, regression, prediction

For spatio-temporal data, the group of regression and prediction tasks orig-
inates in geostatistics. The idea is to formulate a model of the data and use the 

15 F. Giannotti & D. Pedreschi, Mobility, Data Mining and Privacy -Geographic Knowl-
edge Discovery (Springer, 2008).

16 F. Giannotti et al., Proceedings of the 13th ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining, [in:] KDD (ACM, 2007), pp. 330–339, http://doi.acm.
org/10.1145/1281192.1281230.
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model to infer unknown values. While classification works on discrete values, 
regression is for continuous ones. Prediction infers a label (class membership, 
target value) using a decision or regression function that was learned from com-
plete instances. Classification, Regression and Prediction are applicable to all 
three data types: spatio-temporal time series, events and trajectories. A character-
istic of spatio-temporal data (if constrained by space and time e.g. traffic flow in 
a street network) is the autocorrelation between the values, whereby close values 
are more related than distant ones17. A commonly used regression method from 
geo-statistics, Kriging18, models the autocorrelation with variograms that describe 
the correlation between spatio-temporal values at different positions as a function 
of their distance.

Geographically weighted regression19 is another commonly used method 
which models an unknown value as a linear combination of observed values; 
the weights of the observed values vary for different locations. Spatial k-near-
est neighbour algorithm20 infers a data point as a weighted sum of the k nearest 
points. Classification of the tuples in spatio-temporal time series is important for 
outlier detection – a possible method is usage of 1-class support vector machines. 
They describe the subspace of normal observations by a minimum enclosing ball, 
with outliers outside the ball. As the split decision cannot necessarily be described 
spherical in the attributes of the observations, they are transferred to a feature 
space. Instead of computing the transformation for all incoming data, an inner 
product in feature space is defined which can be computed directly using the ob-
servations. The inner productmaps two observations to a real number. Core vector 
machines compute an approximation of the minimum enclosing ball with constant 
space and time requirements21 which contains all observations when scaled by 
a factor of (1+e), with e>0. Prediction of future values in a spatio-temporal time 
series has to respect Tobler’s law, whereby close values correlate more than dis-
tant ones22. This autocorrelation can be directly reflected by so-called graphical 
models. Every observation at a location for a given time is assigned to a random 
variable. In a graphical model the conditional dependencies of the probability 
distributions for the random variables are denoted by edges. A recently developed 

17 W. Tobler, A Computer Movie Simulating Urban Growth in the Detroit Region, Eco-
nomic Geography 46, no. 2 (1970), pp. 234–240.

18 D. G. Krige, A Statistical Approach to Some Mine Valuation and Allied Problems on 
the Witwatersrand (1951).

19 A.S. Fotheringham, Ch. Brunsdon & M. Charlton, Geographically Weighted Regres-
sion: The Analysis of Spatially Varying Relationships (Wiley, 2002).

20 X. Gong & F. Wang, “Three Improvements on KNN-NPR for Traffic Flow Forecast-
ing,” in Proceedings of the 5th International Conference on Intelligent Transportation Systems 
(IEEE Press, 2002), 736–740.

21 M. Badoiu & K.L. Clarkson, Optimal core-sets for balls, Comput. Geom. 40, no. 1 (2008): 14–22.
22 Tobler, A Computer Movie Simulating Urban Growth in the Detroit Region.
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method23 uses Markov Random Fields where every random variable for a partic-
ular time slice is connected with its direct neighbours and their ancestors from 
a previous time slice. This method becomes efficient through the regularization of 
the optimization step, which saves computation when the measurements remain 
about the same.

9.2.3.  Clustering and similarity search

Clustering focuses on the identification of groups of objects (clusters) where the 
elements of a group are similar and the elements of different clusters are dissimilar. 
For non-overlapping clusters, the result is a partitioning of the data. Clustering can 
be applied to all three spatio-temporal data types: events, spatio-temporal time se-
ries and trajectories. A commonly applied spatio-temporal clustering method is the 
density-based algorithm DBSCAN24 that computes the spatio-temporal density of the 
data points and extracts clusters as highly dense sets of points. DBSCAN defines 
similarity between points based on their spatio-temporal distance and follows Tobler’s 
law. Other similarity measures e.g. between time series, between the properties of spa-
tio-temporal events, or between trajectories can be defined. The well-known k-Means 
algorithm has recently been turned into an algorithm for streaming data25. Another 
method that can be applied for cluster analysis is OPTICS26. The Voronoi tessellation 
method27 partitions space based on a set of spatial points. Every spatial point in this set 
is associated with a surrounding polygon comprising all spatial locations that are not 
closer to any other point contained in the set. Zeinalipour-Yazti et al. introduced the 
distributed spatio-temporal similarity search problem28: given a query trajectory Q, 
the purpose of the proposed algorithm was to find the trajectories that follow a motion 

23 N. Piatkowski, S. Lee & K. Morik, “Spatio-temporal random fields: compressible repre-
sentation and distributed estimation,”Machine Learning, 2013, 1–25.

24 M. Ester et al., A Density-Based Algorithm for Discovering Clusters in Large Spatial 
Databases with Noise, in Second International Conference on Knowledge Discovery and Data 
Mining (AAAI Press, 1996), pp. 226–231.

25 H. Fichtenberger et al., BICO: Birch meets Coresets for k-means, in Algorithms– ESA 
2013 (Springer Berlin / Heidelberg, 2013).

26 M. Ankerst et al., OPTICS: ordering points to identify the clustering structure, SIGMOD 
Rec. (New York, NY, USA) 28, no. 2 (June 1999), pp. 49–60.

27 G.F. Voronoï, Nouvelles applications des paramètres continus à la théorie des formes 
quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs., Journal für die 
reine und angewandte Mathematik (Crelle‘s Journal), no. 134 (December 1908), pp. 198–287, 
http ://dx.doi.org/10.1515/crll.1908.134.198.

28 D. Zeinalipour-Yazti, S. Lin & D. Gunopulos, Distributed spatio-temporal similar-
ity search, [in:] Proceedings of the 15th ACM international conference on Information and 
knowledge management, CIKM ‘06 (Arlington, Virginia, USA: ACM, 2006), pp. 14–23, 
doi:10.1145/1183614.1183621, http://doi.acm.org/10.1145/1183614.1183621.
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similar to Q, when each of the target trajectories is segmented across a number of dis-
tributed nodes. Two algorithms were proposed, UB-K and UBLB-K, which combine 
local computations of lower and upper bounds on the matching between the distrib-
uted subsequences and Q. The approach generates the desired result without pulling 
together all the distributed subsequences over the fundamentally expensive communi-
cation medium. The described problem finds applications in a wide array of domains, 
such as cellular networks, wildlife monitoring, and video surveillance.

9.2.4.  Geo-coding and map matching

The transformation of geo-locations is subject to geo-coding and map match-
ing. As geo-coding aims at identification of a location for a spatio-temporal event 
without direct reference to an identifier (e.g. a text message that mentions a street 
name), map matching transfers the coordinates of events or trajectories from one 
reference system to another one. Map matching tasks are common for GPS trajec-
tories which are recorded in the WGS84 reference system and have to be mapped 
to a discrete street network graph. The spatial extents of the street segments are 
used for distance calculations between the street network and a particular point. 
The algorithm in Lou et al.29 uses these distances to generate a set of closest seg-
ments for every point of a trajectory (the segment candidates). For the identifica-
tion of the most likely street segment among these candidates a routing algorithm is 
used which makes assumptions about individual mobility. In the result every point 
of the trajectory is matched to a street segment.

9.3. Privacy threats in spatio-temporal data analysis
From a business perspective, mobility data with sufficiently precise location es-

timation are often valuable for enabling various location-based services; from the per-
spective of privacy advocates, such insights are often deemed a privacy threat or a pri-
vacy risk. Location privacy risks can arise if a third-party acquires a data tuple (user ID, 
location), which proves that an identifiable user has visited a certain location. In most 
cases, the datum will be a triple that also includes a time field describing when the user 
was present at this location. Although in theory there are no location privacy risks if the 
user cannot be identified or if the location cannot be inferred from the data, in practice 
it is difficult to determine when identification and such inferences are possible. In the 
following we reflect an overview on privacy aware learning by Wainwright et al.30:

29 Y. Lou et al., Map-matching for low-sampling-rate GPS trajectories, [in:] Proceedings of 
the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information 
Systems, GIS ‘09 (New York, NY, USA: ACM, 2009), pp. 352–361.

30 M.J. Wainwright,, M.I. Jordan & J.C. Duchi, Privacy aware learning, Advances in Neu-
ral Information Processing Systems. 2012
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There is a long history of research at the intersection of privacy and statis-
tics, going back at least to the 1960s, when Warner31 suggested privacy-preserving 
methods for survey sampling, and to later work related to census-taking and pre-
sentation of tabular data32. More recently, there has been a large amount of compu-
tationally-oriented work on privacy33.

In this section, we provide a brief overview on the subject. We refer the inter-
ested reader to the comprehensive survey by Dwork34.

Most work on privacy attempts to limit disclosure risk: the probability that some 
adversary can link a released record to a particular member of the population or iden-
tify that someone belongs to a dataset that generates a statistic35. In statistical litera-
ture, work on disclosure limitation and so-called linkage risk, for example as in the 
framework of Duncan and Lambert36, has yielded several techniques for maintaining 
privacy, such as aggregation, swapping features or responses between different data 
points, or perturbation of data. Other authors have proposed measures for measuring 
the utility of released data (e.g.,37). The currently standard measure of privacy is dif-
ferential privacy, due to Dwork et al.38, which roughly states that the answer to a data 

31 S.L. Warner, Randomized response: A survey technique for eliminating evasive answer 
bias, Journal of the American Statistical Association 60, no. 309 (1965), pp. 63–69.

32 S.R. Ganta, S.P. Kasiviswanathan & A. Smith, Composition attacks and auxiliary infor-
mation in data privacy, [in:] Proceedings of the 14th ACM SIGKDD international conference on 
Knowledge discovery and data mining (ACM, 2008), pp. 265–273.

33 C. Dwork et al., Calibrating noise to sensitivity in private data analysis, in Theory of 
cryptography (Springer, 2006), 265–284; C. Dwork, Differential privacy: A survey of results, in 
Theory and applications of models of computation (Springer, 2008), pp. 1–19; S. Zhou, L. Was-
serman & J.D. Lafferty, Compressed regression [in:] Advances in Neural Information Processing 
Systems (2008), pp. 1713–1720; L. Wasserman & S. Zhou, A statistical framework for differential 
privacy, Journal of the American Statistical Association 105, no. 489 (2010), pp. 375–389; R. Hall, 
A. Rinaldo & L. Wasserman, Random differential privacy, arXiv preprint arXiv:1112.2680, 2011, 
I. Dinur & K. Nissim, Revealing information while preserving privacy, [in:] Proceedings of the 
twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems 
(ACM, 2003), pp. 202–210; A. Blum, K. Ligett & A. Roth, A learning theory approach to nonin-
teractive database privacy, Journal of the ACM (JACM) 60, no. 2 (2013), p. 12; K. Chaudhuri, C. 
Monteleoni & A. D. Sarwate, “Differentially private empirical risk minimization,”

34 Dwork, Differential privacy: A survey of results.
35 G. T. Duncan & D. Lambert, Disclosure-limited data dissemination, Journal of the 

American statistical association 81, no. 393 (1986), pp. 10–18; J.P. Reiter, Estimating risks of 
identification disclosure in microdata, Journal of the American Statistical Association 100, no. 
472 (2005), pp. 1103–1112; A. F. Karr et al., A framework for evaluating the utility of data al-
tered to protect confidentiality, The American Statistician 60, no. 3 (2006), pp. 224–232.

36 Duncan & Lambert, Disclosure-limited data dissemination.
37 Karr et al., “A framework for evaluating the utility of data altered to protect confidentiali-

ty”; L.H. Cox, A. F. Karr & S. K. Kinney, Risk-Utility Paradigms for Statistical Disclosure Limita-
tion: How to Think, But Not How to Act, International Statistical Review 79, no. 2 (2011): 160–183.

38 Dwork et al., Calibrating noise to sensitivity in private data analysis.
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query must not depend too much on the samples, and it should be difficult, given 
the answer to a query, to ascertain whether a vector is contained in the used dataset.

9.3.1.  Threats from moving spatial sensors

Recently, several location privacy incidents were reported in the media. A fa-
mous incident regards the case of Apple39, where 3G Apple iOS devices were re-
ported to store the location of their mobile users’ in unencrypted form for a period 
of over one year. This precise location information was stored without the knowl-
edge of the users and was transmitted to the iTunes application during the synchro-
nization of the device. According to Apple, the stored location information was not 
used to track the users but was attributed to a programming error which was later 
fixed with a software update. Google was also reported to be using precise location 
data, collected from users’ mobile devices, to improve the accuracy of its naviga-
tion services40, while Microsoft41 recently admitted that their camera application in 
Windows Phone 7 ignored the users’ privacy settings to disable transmitting their 
location information to Microsoft. In response to this incident, the company issued 
a software update. Although the above-mentioned privacy incidents did not lead to 
actual harm caused to the individuals due to the lack of location privacy, the contin-
ual flurry of such breaches is worrying as it becomes evident that sensitive location 
information may easily fall into the wrong hands42. In the following subsections, 
we elaborate on different types of privacy risk that can lead to user identification or 
disclose sensitive location.

9.3.2.  Collection of location information with assigned user ID

This is the most trivial case, as long as the location of the user is estimated 
with sufficient accuracy for providing the intended location based service (LBS). In 
cases where the location is not yet precise enough, various techniques (e.g. fusion 
of several raw location data from various sensors) allow for improved accuracy.

Example 3.2.1: A cellular mobile network operator (MNO) routinely stores 
tuples of the form (cell ID and sector ID, user ID), e.g. within the call detail records 
data (CDR) for billing purposes.

39 N. Bilton, 3G Apple iOS Devices Are Storing Users’ Location Data, The New York 
Times, Published: April 20, 2011, 2011.

40 M. Helft, Apple and Google Use Phone Data to Map the World, The New York Times, 
Published: April 25, 2011, 2011.

41 D. McCullagh, Microsoft collects locations of Windows phone users, CNet News, Pub-
lished: April 25, 2011, 2011.

42 N. Bilton, Holding Companies Accountable for Privacy Breaches, The New York Times, 
Published: April 27, 2011.
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Example 3.2.2: A smartphone app gets the GPS-location for a user who has 
already been identified, e.g. by his/her login to the application or by a payment 
transaction.

Example 3.2.3: From a smartphone, a smartphone application provider re-
ceives the IDs and signal strengths of several nearby transmitters (base stations, 
WiFi devices, etc.). Based on previously established maps of these transmitters, the 
application provider is able to estimate a more precise location.

Additionally, application providers may have direct access to a variety of pub-
licly available spatial and temporal data such as geographical space and inherent 
properties of different locations and parts of the space (e.g. street vs. park) various 
objects existing or occurring in space and time: static spatial objects (having partic-
ular constant positions in space), events (having particular positions in time), and 
moving objects (changing their spatial positions over time). Such information ei-
ther exists in explicit form in public databases like OpenStreetMap, WikiMapia or 
in smartphone application providers’ data centers, or can be extracted from public-
ly available data by means of event detection or situation similarity assessment43. 
Combining such information with positions and identities of users allows deep 
semantic understanding of their habits, contacts, and lifestyle.

9.3.3.  Collection of anonymous location information

When location data is collected without any obvious user identifiers, privacy 
risks are reduced and such seemingly anonymous data is usually exempted from 
privacy regulations. It is, however, often possible to re-identify users based on 
quasi-identifying data that have been collected. Therefore, the aforementioned 
risks can apply even to such anonymous data. The degree of difficulty in re-iden-
tifying anonymized data depends on the exact details of the data collection and 
anonymization scheme as well as on the adversaries’ access to background in-
formation. Consider the following examples: Re-identifying individual samples. 
Individual location records can be re-identified through observation attacks44. The 
adversary knows that user Alice was the only user in location (area) l at time t, per-
haps because the adversary has seen the person at this location or because records 
from another source prove it. If the adversary now finds an anonymous datum (l, 
t) in the collected mobility data, the adversary can infer that this datum could only 

43 G.L. Andrienko et al., From movement tracks through events to places: Extracting and 
characterizing significant places from mobility data, in IEEE VAST (2011), 161–170; G.L. An-
drienko et al., Identifying Place Histories from Activity Traces with an Eye to Parameter Im-
pact, IEEE Trans. Vis. Comput. Graph. 18, no. 5 (2012): 675–688.

44 C. Y. T. Ma et al., Privacy vulnerability of published anonymous mobility traces, in 
Proceedings of the sixteenth annual international conference on Mobile computing and net-
working, MobiCom ‘10 (New York, NY, USA: ACM, 2010), 185–196.
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have been collected from Alice and has therefore re-identified the individual. In 
this trivial example, there is actually no privacy risk from this re-identification 
because the adversary knew a priori that Alice was at location l at time t, so the 
adversary has not learned anything new. There are, however, three important vari-
ants of this trivial case that can pose privacy risks. First, the anonymous datum 
may contain a more precise location l’ or a more precise time t’ than the adversary 
knew about a priori. In this case, the adversary learns this more precise informa-
tion. Second, the adversary may not know that Alice was at l but simply know 
that Alice is the only user who has access to location l. In this latter case, also 
referred to as restricted space identification, the adversary would learn when Alice 
was actually present at this location. Third, the anonymous datum may contain 
additional fields with potentially sensitive information that the adversary did not 
know before. Note, however, that such additional information can also make the 
re-identification task easier.

Re-identifying time-series location data. Re-identification can also become 
substantially easier when location data is repeatedly collected and time series loca-
tion traces are available. We refer to time series location traces, rather than individ-
ual location samples, when it is clear which set of location samples was collected 
from the same user (even though the identity of the user is not known). For exam-
ple, the location data may be stored in separate files for each user or a pseudonym 
may be used to link multiple records to the same user.

Example 3.3.1: A partner of the mobile network operator (MNO) has obtained 
anonymized traces of a user, e.g. as a sequence of CDRs where all user IDs have 
been removed. While this looks like anonymous location data, various approaches 
exist to re-identify the user associated with these mobility traces. One approach is 
to identify the top 2 locations where the user spent most time. This corresponds in 
many cases to the user’s home and work locations. Empirical research has further 
observed that the pair (home location, work location) is often already sufficient to 
identify a unique user45. A recent empirical study46 explains various approaches 
for re-identification of a user. Another paper has analyzed the consequences for 
privacy law and its interpretation of increasingly strong re-identification methods47. 
Further re-identification methods for location data rely on various inference and 
data mining techniques.

45 P. Golle & K. Partridge, On the Anonymity of Home/Work Location Pairs, in Pervasive 
Computing, ed. H. Tokuda et al., vol. 5538, Lecture Notes in Computer Science (Springer Berlin 
/ Heidelberg, 2009), 390–397.

46 H. Zang & J. Bolot, “Anonymization of location data does not work: a large-scale mea-
surement study,” in Proceedings of the 17th annual international conference on Mobile comput-
ing and networking, MobiCom ‘11 (New York, NY, USA: ACM, 2011), 145–156.

47 Ohm P., Broken Promises of Privacy: Responding to the Surprising Failure of Ano-
nymization, UCLA Law Review, Vol. 57, p. 1701, 2010, 2009.
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9.3.4.  Collection of data without location

Even in the absence of actual location readings provided by positioning devic-
es, location disclosures may occur by means of other modern technologies. Recent 
work by Jun et al. demonstrated that the complete trajectory of a user can be re-
vealed with 200m accuracy by using accelerometer readings, even when no initial 
location information is known48. What is even more alarming is that accelerom-
eters, typically installed in modern smartphones, are usually not secured against 
third-party applications, which can easily obtain such readings without requiring 
any special privileges. Acceleration information can thus be transmitted to external 
servers and be used to disclose user location even if all localization mechanisms of 
the mobile device are disabled.

Another example of privacy disclosures in mobile devices regards the moni-
toring of user screen taps through the use of accelerometer and gyroscope readings. 
Recent work by Miluzzo et al.49 demonstrated that user inputs across the display, 
including the on-screen keyboard, of a mobile device can be silently identified 
with high precision through the use of motion sensors and machine learning anal-
ysis. Their prototype implementation achieved tap location identification rates of 
as high as 90% in accuracy, practically demonstrating that malevolent applications 
installed in mobile devices may severely compromise the privacy of the users.

Last but not least, several privacy vulnerabilities may arise through the var-
ious resource types that are typically supported and communicated by modern 
mobile phone applications. Hornyack, et al.50 examined several popular Android 
applications which require both internet access and access to sensitive data, such as 
location, contacts, camera, microphone, etc. for their operation. Their examination 
showed that almost 34% of the top 1100 popular Android applications required 
access to location data, while almost 10% of the applications required access to 
the user contacts. As can be anticipated, access of third-party applications to such 
sensitive data sources may lead both to user re-identification and to sensitive infor-
mation disclosure attacks, unless privacy enabling technology is in place.

Example 3.4.1: During a vacation, a user has taken many photographs, which 
are all tagged with a time-stamp but not geo-coded. There are, however, techniques 

48 H. Jun et al., “ACComplice: Location inference using accelerometers on smartphones,” 
in Communication Systems and Networks (COMSNETS), 2012 Fourth International Conference 
on (2012), pp. 1–9.

49 E. Miluzzo et al., “Tapprints: your finger taps have fingerprints,” [in:] Proceedings of 
the 10th international conference on Mobile systems, applications, and services, MobiSys ‘12 
(New York, NY, USA: ACM, 2012),pp. 323–336.

50 P. Hornyack et al., “These aren’t the droids you’re looking for: retrofitting android 
to protect data from imperious applications,” [in:] Proceedings of the 18th ACM conference 
on Computer and communications security, CCS ‘11 (New York, NY, USA: ACM, 2011), pp. 
639–652.
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to assign a geo-location to most images, as long as these they contain some unique 
features. Similarly, there are techniques to assign real names to most persons in 
the photographss, e.g. by using tools or crowdsourcing as provided e.g. by a social 
network or other platforms to store photos. Having times and places for a photo 
stream one might reconstruct precise trajectories.

Example 4.4.2: An app is able to continuously read the accelerometer of 
a handset. This enables it to reconstruct a 3D trace of the user’s movements.

9.3.5.  Episodic movement data

Most of the data collected by mobile phone network operators are referred 
to as “Episodic Movement Data”: data about spatial positions of moving objects 
where the time intervals between the measurements may be quite large and there-
fore the intermediate positions cannot be reliably reconstructed by means of inter-
polation, map matching, or other methods. Three main types of uncertainty dis-
tinguish episodic from continuous movement data and these were identified in51. 
First, the most common type of uncertainty is the lack of information about the 
spatial positions of the objects between the recorded positions (continuity), which 
is caused by large time intervals between the recordings and by missed recordings. 
Second, a frequently occurring type of uncertainty is low granularity of the record-
ed positions (accuracy). Due to these two types of uncertainty, episodic movement 
data cannot be treated as continuous trajectories, i.e., unbroken lines in the spa-
tio-temporal continuum such that some point on the line exists for each time mo-
ment. Third, the number of recorded objects (coverage) may also be uncertain due 
to the usage of a service or due to the utilized sensor technology. For example, one 
individual may carry two or more devices, which will be registered as independent 
objects. Some recording techniques only capture devices which are turned on. The 
activation status may change as a device carrier moves. As discussed above, the 
information encoded in episodic data is much smaller than in continuous move-
ment data. Many of the existing data analysis and privacy preservation methods 
designed for dealing with movement data are explicitly or implicitly based on the 
assumption of continuous objects movement between the measured positions and 
are therefore not suitable for episodic data. However, due to the increased avail-
ability of mobile phone data, analysis methods for episodic movement data and the 
retrieval of data for unobserved locations are rapidly evolving. Though such tech-
niques pose a privacy risk, they also help us understand what sensitive information 
can be extracted from location traces.

51 N. Andrienko et al., Visual Analytics for Understanding Spatial Situations from Ep-
isodic Movement Data, KI– Künstliche Intelligenz, 2012, 241–251, http://dx.doi.org/10.1007/
s13218-012-0177-4.
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9.3.6.  Threats from stationary spatial sensors

Smartphones became a convenient way to communicate and access information. 
With the integration of GPS sensors, mobility mining was pushed forward52. The mo-
bility information of multiple devices is usually stored on a server which performs 
analysis in order to extract knowledge on movement behaviour. In the easiest case this 
is the number of visitors to specific places. The processing of the data streams became 
infeasible for large use cases, where millions of people are monitored and massive 
data streams have to be processed. In such Big Data scenarios, the expensive compu-
tation (matching and counting in individual, continuous GPS streams) is split among 
the parties and only the aggregation step remains on the server (In contrast Boutsis and 
Kalogeraki53 present a method that distributes the query). Thus, continuous movement 
records (GPS) are reduced to episodic movement data54 consisting of geo-referenced 
events and their aggregates: number of people visiting a certain location, number of 
people moving from one location to another one, and so on. The preprocessing of 
the GPS data streams is then performed locally on the location based devices and the 
aggregation is subject to crowd sourcing. Recent work focusses on in-situ analysis to 
monitor location based events (visits55, moves56) or even more complex movement 
patterns57 in GPS streams. In all cases a database with the locations or patterns of 
interest is provided in advance, and the mobile device computes event-histograms for 
succeeding time-slices. These histograms are much smaller and may be aggregated by 
the server in order to achieve knowledge on current movement behaviour. However, 
the transmission of such individual movement behaviour still poses privacy risks58. 
Even access by third parties compromises individual privacy as recent disclosures 
on the NSA PRISM program reveal. The devices monitor daily behaviour and thus 

52 Giannotti & Pedreschi, Mobility, Data Mining and Privacy – Geographic Knowledge 
Discovery.

53 I. Boutsis & V. Kalogeraki, Privacy preservation for participatory sensing data, 2014 
IEEE International Conference on Pervasive Computing and Communications (PerCom) (Los 
Alamitos, CA, USA), 2013, pp. 103– 113.

54 Andrienko et al., Visual Analytics for Understanding Spatial Situations from Episodic 
Movement Data.

55 C. Kopp, M. Mock & M. May, Privacy-preserving distributed monitoring of visit 
quantities, [in:] Proceedings of the 20th International Conference on Advances in Geograph-
ic Information Systems, SIGSPATIAL ‘12 (New York, NY, USA: ACM, 2012), pp. 438–441, 
doi:10.1145/2424321. 2424384.

56 B. Hoh et al., Enhancing Privacy and Accuracy in Probe Vehicle-Based Traffic Monitor-
ing via Virtual Trip Lines, IEEE Trans. Mob. Comput. 11, no. 5 (2012), pp. 849–864.

57 S.-C. Florescu et al., “Efficient Mobility Pattern Detection on Mobile Devices,” in Pro-
ceedings of the ECAI’12 Workshop on Ubiquitous Data Mining (2012), pp. 23–27.

58 G. Andrienko et al., “Report from Dagstuhl: the liberation of mobile location data and 
its implications for privacy research,” ACM SIGMOBILE Mobile Computing and Communica-
tions Review 17, no. 2 (2013), pp. 7–18.
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reveal workplace and working hours, the place where users spent the night and oth-
er locations indicating information on sensitive subjects as health, religion, political 
opinions, sexual orientation, etc. Thus, the transferred episodic movement data may 
even lead to re-identification. The protection of the individual histogram in such a data 
stream of locally aggregated mobility events is therefore an important task. The ad-
versary model is a compromised server that utilizes the received individual histogram 
for inference of identities and other sensitive data. Existing methods either act at the 
network layer59 or, inspired by the differential privacy paradigm, they add random 
noise60. The work in61 denotes a protocol for secure aggregation among multiple par-
ties, but their algorithm requires extensive communication between the parties and is 
infeasible in a single server scenario; also their encryption can be broken after several 
computation cycles. Recently, Liebig62 proposed usage of homeomorphic encryption 
for secure aggregation of distributed mobility histograms.

9.4. Discussion and �nal remarks

In this work we provided an introduction to spatio-temporal data mining and 
highlighted popular analysis methods. Afterwards privacy threats of these analysis 
methods were discussed and examples were presented. With the advent of Big Data 
systems, we see a trend towards real-time and distributed data analysis. While these 
systems provide great utility e.g. for crisis response or intelligent traffic systems, the 
protection of vulnerable data is difficult in these scenarios. Established privacy mea-
sures, e.g. differential privacy, are not directly applicable to streaming data and novel 
privacy measures are required. Moreover legislation has to provide corridors for legal 
data handling that allow for innovative applications and protect individual data and 
identities. Future research will focus on privacy preserving analysis in these setting.
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