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Abstract Route planning makes direct use of geographic data and provides ben-
eficial recommendations to the public. In real-world the schedule of transit vehi-
cles is dynamic and delays in the schedules occur. Incorporation of these dynamic
schedule changes in multi-modal route computation is difficult and requires a lot of
computational resources. Our approach extends the state-of-the-art for static transit
schedules, Transfer Patterns, for the dynamic case. Therefore, we amend the pat-
terns by additional edges that cover the dynamics. Our approach is implemented
in the open-source routing framework OpenTripPlanner and compared to existing
methods in the city of Warsaw. Our results are an order of magnitude faster then
existing methods.

1 Introduction

In a changing world geo-spatial data is subject to dynamic changes and geo-
information systems are required to incorporate real-time updates in their analysis
and computations (Schnitzler et al. 2014). In this paper we focus particularly on
route planning systems. While in a static world a bunch of algorithms exist to com-
pute (shortest) paths from a starting location to a target location efficiently (compare
Section 2), this problem becomes more difficult in case of multi-modal trip planning
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including public transport, as temporal constraints, e.g. transit times and departure
times, need to be incorporated. In real world, these static schedules are not met, but
delays occur (Mazimpaka and Timpf 2016) and deviations from the schedule could
be observed. Incorporation of these dynamic information in route computation is
beneficial, as it allows to provide tractable travel recommendations to the public.
The dynamic information on the delays can be achieved by monitoring positions
of the vehicles and even by prediction of future delays. This enables pro-active trip
computation.

In (Liebig et al. 2017, 2014), we highlighted how vehicular traffic predictions can
be incorporated into trip computations. The paper at-hand incorporates public trans-
port delays (which could be the result of prediction) and focuses on the tractability
of dynamic transit computation. Existing single source shortest path computation
algorithms for the dynamic transit problem suffer from their long computation time,
the very fast route planning algorithm for transit networks, Transfer Pattern, does
not guarantee soundness in case of real-time delay information. Our approach, over-
comes these shortcomings and introduces dynamic transfer patterns, a data structure
that encodes which novel transit possibilities are enabled due to the delays.

In a comparison with existing dynamic transit routing schemes, in the city of
Warsaw, we highlight the performance gain using our method. Our findings are im-
plemented in the commonly used open source trip planning framework OpenTrip-
Planner and a pre-configured Virtual Machine is ready to use in industrial context.

The paper is structured as follows. Section 2 provides an introduction to routing
algorithms and the transit routing problem. Section 3 presents our Dynamic Transfer
Pattern method. Implementation details are provided afterwards in Section 4. Next,
we analyse tram delays in the city of Warsaw, Poland, and we continue with perfor-
mance evaluation in this city, Section 4. In the end, we discuss future research ideas,
Section 7.

2 Related Work

In this paper we focus on the point-to-point shortest path problem (Bast et al. 2016),
where in a graph G = (V,E) a path between a source s ∈ V and target t ∈ V needs
to be found such that the cumulative edge-wise cost l(u,v),with(u,v) ∈ E ⊆V ×V
along the path is minimized.

2.1 Shortest Path Routing

Standard solution to the problem is using Dijkstra’s algorithm (Dijkstra 1959).
Given the graph G = (V,E) and s, t ∈ V , it initializes a queue of nodes Q = V and
a distance function over V ×V with dist(s,s) = 0 and dist(s,v) = ∞,∀v 6= s,v ∈ V .
Until the queue is empty the node u with the smallest distance dist(s,u) is picked
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and removed from Q. For each neighboring node of u the distance is updated as
follows: dist(s,v) := dist(s,u)+ l(u,v), if the latter is smaller than the former. Dijk-
stra’s algorithm can be sped up by running it simultaneously from both s and t until
a common node u is hit. In the slightly modified version of Dijkstra’s algorithm A∗

(Hart, Nilsson and Raphael 1968) the order in the priority-queue for the traversal not
only depends on the cumulated costs to reach a vertex in the graph but also on the
expected costs to reach the goal from this vertex. Bound by Minkowski’s inequal-
ity, whereas ||x+ y||p ≤ ||x||p + ||y||p (known as triangle inequality for p = 2), A∗

prunes the search space in comparison to Dijkstra’s Algorithm. A sound heuristic
for the remaining cost estimation is the geographical distance that is always lower
than the road-based distance.

In case of static cost functions Geisberger et al. propose a data structure called
contraction hierarchies (Geisberger et al. 2008), which speed up the A∗ algorithm
and enable trip calculation in large traffic networks at European scale. Instead of
searching the shortest path directly within the traffic network, contraction hierar-
chies reduce the search space to the most important ones. In a preprocessing step
these important segments are identified (based on the topology) and the network is
extended by edges between these important links.

2.2 Shortest Path Routing in Transit Networks

In contrast to regular road networks, public transportation data enhances a spatial
graph with temporal data by adding timetable information. A trip T serves a se-
quence of stops stops(T ) = (s1, . . . ,sn),si ∈ S. Thus T connects two stops sa and sb
if and only if stop(T,sa)< stop(T,sb). If one or more trips contain the exact same
sequence of stops, they form a line (Bast, Sternisko and Storandt 2013).

Common approach is to incorporate dynamic information into the graph G and
then to apply Dijkstra’s algorithm. This results in a time extended or time dependent
model. In the time extended model every transit node is split into multiple vertices
for each event (arrival, transit and departure). The time dependent model assigns
every transit node one vertex and arcs encode temporal constraints.

A recent data structure and algorithm, transfer patterns, introduced by (Bast et al.
2010) is considered state-of-the-art in public transport routing. Based on the as-
sumption that during a day, there are only a few optimal routes from stop ss to stop
st that differ only in the time they take place. In a preprocessing phase, optimal
routes are computed as a sequence of transfer stations, neglecting the time compo-
nent as well as information about intermediate stations. For each origin and target
destination a directed acyclic graph is saved, containing all routes starting with the
destination and containing all intermediate stations until the origin is reached.

In a realistic route planning scenario, various delays occur amongst the public
transport vehicles. In contrast to vehicular traffic, trams and trains can not overtake,
and vehicles in transit networks wait for each others (e.g. connecting trains), this
causes delays to propagate differently than vehicular traffic jams. In addition, two
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modes of transportation may share the same physical resource (e.g. buses or trams
riding on vehicular street). Thus, two forms of delays in transit networks are distin-
guished in literature: 1) a vehicle is late due to own reasons, and 2) other vehicles
are late caused by the former (Müller-Hannemann and Schnee 2009).

Several models for transit delays are reported in literature. The work in (Dibbelt
et al. 2013) assumes independence. In contrast, (Goerigk et al. 2011) allow delays
within their approach to cumulate. Sophisticated models incorporate dependencies
among the vehicles into the delay (Higgins and Kozan 1998). In (Mazimpaka and
Timpf 2016) the delays are analyzed visually.

In a trip planning application real-time predictions of delay are a main benefit as
future delays may influence the route choice. Thus, we highlight two recent works
on delay prediction and delay recognition: (Gal et al. 2015) applies queueing theory
and assumes delays to aggregate, (Zygouras et al. 2015) detects delays and unex-
pected vehicle movement in real-time from the GPS traces.

In this work we do not focus on the prediction, but assume that we have informa-
tion on delays of vehicles (in the commonly used GTFS realtime data format) either
from vehicle observations or even predictions.

With such dynamics the trip computation becomes more difficult. Though states
a previous paper (Bast, Sternisko and Storandt 2013) that transfer pattern are delay
robust, but this only holds as long as no new transfers are enabled by the delay. In
the likely case that novel transfers are enabled the existing transfer patterns do not
represent this information and can not result in the optimal transit route.

3 Dynamic Transfer Pattern

Transfer Patterns were introduced in (Bast et al. 2010). The method comprises a
data structure and an algorithm for fast transit route computation. In a preprocessing
step all possible routes are precomputed and stored in a compressed way. For each
public transport line a table is stored denoting in the columns the stops along the
line. In this way it holds the maximal possible route without changes. The rows of
the table represent the actual trips of the line, Table 1 gives an example, compare
also (Cárdenas 2013).

Table 1 Transfer Pattern Example

line L17 sa ss sb sy · · ·

trip 1 8:15 8:22 8:23 8:27 8:29 8:38 8:39 · · ·
trip 2 9:14 9:21 9:22 9:28 9:28 9:37 9:38 · · ·

In addition, for every station a list is stored with the passing lines and their posi-
tion in the trips, see an example in Table 2.
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Table 2 Transfer Pattern Example (continued)

ss: (L8,4) (L17,2) (L34,5) (L87,17) · · ·
sy: (L9,4) (L13,5) (L17,4) (L55,16) · · ·

su

sxswsyss st

Fig. 1 DAG structure of the transfer pattern.

With Transfer Pattern a route from sstart to sstop at time t is calculated by the in-
tersection of the lists for sstart and sstop, the first connection after time t is the desired
result. As an example, the route from ss to sy at 9:03 is computed by intersecting
the lines in Table 2, we find that line 17 connects the stops on positions 2 and 4.
According to Table 1 the earliest possible trip is departing 9:22 at ss and arrives at sy
at 9:37. In the pre-processing phase the shortest paths amongst all stops (neglecting
temporal information) are constructed and intermediate stops are stored in a directed
acyclic graph (DAG). Figure 1 exemplifies this for ss.

In case of a routing query from stop ss to stop st the DAG for ss is picked and all
connecting paths among ss to st are taken into account for routing.

With dynamic schedule information at hand, the time table information (Table 1
in our example) can be updated and the route computation could be performed as in
the regular case (Bast, Sternisko and Storandt 2013). However, it might be that the
optimal connection is not precomputed as new connections could be enabled by the
delay itself, especially if multiple trips arrive belated. Incorporation of the delays in
trip computation provides benefits to travelers, thus next section addresses our im-
plementation of dynamic transfer pattern in the routing platform OpenTripPlanner.

Our approach is to include alternative patterns that emerge due to delays or can-
cellations in the data structure by simulating these very delays during precomputa-
tion. In order to achieve this, all lines of non-final trips of a Transfer Pattern orig-
inating in ss are recorded during computation of static routes. In a next step, these
lines are combined into delay scenarios.

As a simple example of such a scenario, consider a route from ss to st by transfer-
ring at sy. Furthermore, the first trip is delayed considerably, making an alternative
route with a transfer at sv favorable in the Pareto sense. Since the advantage of the
second pattern depends on a certain scenario of realtime delays, it could not have
been precomputed as a static Transfer Pattern.
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su

sxswsy

sv

ss st

L17 +4’

Fig. 2 DAG structure of the dynamic transfer pattern.

Alternative Transfer Patterns are computed by applying to the graph by delay-
ing according trips artificially, making transfers to the next respective trips in time
infeasible. When running the routing algorithm now, it returns the next best routes
considering the delay situation. All such alternative Transfer Patterns are eventually
merged into the regular DAGs after having been classified in terms of lines that were
artificially delayed and their respective amount of delay. See Figure 2.

All lines used in regular Transfer Patterns can be combined into delay scenar-
ios in numerous ways. Considering all combinations of n delayed lines producing
2n scenarios implies enormous computational costs. Multiple ways of combining
delayed trips were thus introduced, trying to cover many alternative routes while
keeping the overall number of scenarios as low as possible.

A trivial approach is to incorporate delays of only a single line at a time. This
method may already significantly increase computation costs for large graphs com-
pared to merely computing static patterns. For this reason, picking a limited number
of random lines per Transfer Pattern subgraph was introduced as another approach.
Lastly, in pursuance of computing the most useful alternative routes, past data of
lines with a high likelihood of delay can be utilized. This means picking often-
delayed lines or combinations thereof more frequently when constructing a limited
amount of delay scenarios.

When answering a routing query with dynamic traffic data, the corresponding
query graph is fetched in a similar fashion regular Transfer Patterns are handled.
When walking across the graph from target to source, the delay classification of each
arc is checked. Arcs with no delay classification are always considered, in contrast
to arcs with delay classification, which have to match the actual traffic situation.
Realtime traffic information match a classification if and only if each trip of the
classification is delayed by an amount bigger or equal to the amount specified.

Since real time delay information has been applied to departure and arrival times,
it is possible that some patterns need a much longer travel time or are completely
infeasible and thus no longer interesting to the user. These patterns are discarded
either when direct connections are fetched for all trips or when they are dominated
by other patterns in the Pareto sense.



Dynamic Transfer Patterns for Fast Multi-modal Route Planning 7

Fig. 3 OpenTripPlanner incorporating dynamic delay information.

4 Integration in OpenTripPlanner

We implemented the hereby presented dynamic transfer pattern routing scheme
in OpenTripPlanner (a commonly used open-source trip computation framework).
Therefore we consume information on the transit network and schedules from a
commonly used GTFS representation, and dynamic updates in GTFS-realtime for-
mat The latter could be retrieved either by an automatic vehicle location system, as
in (Mazimpaka and Timpf 2016) or by real-time predictions as in (Zygouras et al.
2015). OpenTripPlanner uses the street network provided by OpenStreetMap. Our
routing scheme is integrated as an optional routing algorithm in OTP, its sources are
publicly available and a running setup is preconfigured as vagrant box1. A screen-
shot of the user-interface of the routing system in depicted in Figure 3.

1 https://bitbucket.org/tliebig/developvm/branch/transferpatterns
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Fig. 4 Sample tram routes approximated from GPS data. Periodical location reporting and gaps in
location reporting result in occasionally significant distance between consecutive tram coordinates.
Best viewed in color.

5 Analysis of Tram Location Data

It is vital before delays are incorporated in route planning to understand some delay
data. In our case, we study the delays in the city of Warsaw, Poland. These data are
attained through the integration of location data retrieved in near real time manner
from GPS sensors present in trams, tram stop point coordinates and schedule data.
Every tram reports its GPS position together with its identifier, which is a combi-
nation of line number and brigade number. Such reports are produced every 30 sec.
These data are available via API to the public, except for the number of brigade,
which was made available by the City of Warsaw for the project. The data are not
clean, various types of problems appear: some records are missing, GPS positions
are inaccurate, occasionally two trams report the same identifier. What should be
emphasised here is that no imputation of missing data was applied. As an illustra-
tion of GPS data quality issues, see the approximation of the tram routes provided
in Figure 4.

Even if the GPS data were perfect, it would not be clear how to extract from
GPS data precise times of arrival and departures of trams at tram stops. One of the
reasons is that a tram stop is defined by point coordinates of the stop. The simplest
method to compute the departure of a tram from a stop is to compute the time when
a tram leaves a circle centered at stop point. However, it is not clear what radius of
the circle is appropriate. If it is too small, then a tram can ’miss’ the stop. The radius
must be larger than the length of a tram, since two trams in a row can stop at the
same time on the same tram stop. On the other hand, if the radius is big then other
problems appear. The tram might have left the stop but is waiting near the stop by
the traffic lights, and we still consider it as present at the tram stop. In quite many
cases, a tram stop is located immediately before traffic lights. In such cases, the fact
that a tram does not leave the stop on time may mean delay caused by the tram
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itself or may be due to traffic lights suspending tram departure. All these factors
contribute to the fact that precise calculation of arrival and departure times would
not be possible even based on accurate tram coordinates i.e. coordinates not affected
by GPS inaccuracies.

To address these problems, at least partially, for every tram stop we define a line
going through the stop point. If a tram crosses this line, we consider the tram has
left the tram stop. If the route of the tram near the tram stop is straight, the line is
perpendicular to the route. If the tram stop is near the turn of the route, then the line
is parallel to the bisector of the turn. These rules let us address the issue of estimating
tram departure time based on location time series. Still, departure time estimates
remain noisy for the reasons described above. Moreover, they can be affected by
traffic lights. For these reasons it is inevitable for the trams to:

• arrive earlier than needed, because of varied traffic light conditions
• be considered late because of standing behind another tram (and tram stop line),

while being already at tram stop and having its doors open
• be considered late because of waiting for traffic light change.

Finally, what is worth mentioning here is that temporary conditions such as events
causing major traffic disruption may be not reflected in the schedules and are just
announced through City of Warsaw Twitter and RSS channels. Taking into account
all these aspects, what is considered as a delay or early arrival may mean on time
departure or departure at a time not matching the schedules due to the circumstances
beyond control of Warsaw Trams.

To illustrate the distribution of the differences between scheduled time and the
most approximate observed departure time in time domain, the data for 23rd of
March 2016 coming from Warsaw City tram system was used. In the preprocessing
stage, it was limited to the time between 4:00-23:59. Moreover, differences between
planned and observed departure exceeding 20 minutes were isolated for further in-
vestigation. Altogether events related to these two categories correspond to less than
4% of the data. Based on the remaining 96.4% of the data, the analysis described
below was performed. First of all, Fig. 5 illustrating all differences has been devel-
oped. Not surprisingly, it is dominated by on-time arrivals. It is more interesting to
look at early departures and delayed departures, provided in the left and right part
of Fig. 5, respectively. In particular, what can be observed is quite a significant pro-
portion of early departures. As stated above, based on the available data distinction
between actual arrival and departure time may be problematic. Hence, the interpre-
tation of the histograms necessitates particular attention being paid to the way the
data has been collected and processed.

What is of particular interest for dynamic route planning is whether delays and
early departures vary over the day. Fig. 6 answers this question showing mean ab-
solute delay for individual hours of the day. Quite surprisingly, lower values are
observed for peak hours 7-9 and 15-18. This may suggest the potential for both the
development of prediction module and schedule improvement. Further analysis per-
formed for individual tram lines separately is provided in Fig. 7. This reveals that
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Fig. 5 Percentage of share of differences between planned and observed time of passing tram
stop line; the bar in green shows the percentage of cases of less than 30 seconds difference. Based
on the data for 23rd of March 2016 from Warsaw City trams, limited to the time between 4:00-
23:59 and containing coordinate records from all 25 tram lines operated in this period. It can be
observed that majority of trams pass tram stop lines in time. Still, relatively many early and delayed
departures are observed. Among other reasons, the aforementioned limited ability to precisely
determine arrival and departure time contributes to the problem. The figure is best viewed in color.

two tram lines largely contribute to the overall mean absolute delays. Hence, some
routes are far more susceptible to delays than others.

Another performance indicator to consider is the proportion of trams on time,
departing early and late. We consider a tram to be on time, if it passes tram stop point
at most 120 seconds before or 120 seconds after the scheduled time. The percentage
of early, on time and late departures of trams throughout the day remains largely
stable. It is surprising that the trams are relatively more punctual in the rush hours
and less punctual just before the morning peak and just after the afternoon peak.
In particular, minimum percentage of on time departures per an hour is 75.6% and
occurs at h=21. On the other hand, maximum percentage of on time departures per
an hour is 85.2%, which is observed at h = 17 i.e. during peak afternoon period. The
reasons of this are worth investigating in the future.

The preliminary analysis of tram location data compared with schedule data,
reveals that:

• departure time not matching schedule time can be identified, but has to be anal-
ysed carefully, taking into account limited certainty of departure time estimation,

• still, noticeable number of early and late departure events can be observed in the
data,
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Fig. 6 Average mean absolute tram delay per an hour. Both early and late departures are consid-
ered. Significant variation of mean absolute difference between planned and observed departure
takes place over the day. The differences observed are between approx. 1.3 and 2.5 min. Interest-
ingly, the smallest differences meaning the most punctual trams are observed during peak traffic
hours i.e. for h ∈ {7,8,9,15,16,17,18}
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Fig. 7 Average mean absolute tram delay per an hour for individual tram lines. Both early and
late departures are considered. Differences in the punctuality of individual tram lines are observed.
These vary between 0.5 min and 10 mins depending on the line and time of the day. Best viewed
in color.
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Fig. 8 Distribution of the computation time of public transport routing schemes (Dynamic Trans-
fer Patterns, A∗, RAPTOR) in milliseconds for 1000 randomly chosen source target locations in
OpenTripPlanner under realistic conditions in Warsaw, Poland. Note logarithmic scaling.

• tram delays and early departures significantly vary based on the time of the day
and tram line.

6 Performance Evaluation

Main goal of the paper hereby is to speed-up trip computation in case of dynamic
delays. As we aim to apply the transit route computations in an industrial project,
we decided to extend capabilities of existing open source platform OpenTripPlan-
ner (OTP). Thus, we compare our dynamic transfer pattern with the transit routing
schemes already available in OTP. In OTP the algorithms A∗ (Hart, Nilsson and
Raphael 1968) and RAPTOR (Delling, Pajor and Werneck 2012) are available. We
test the routing performance in the city of Warsaw, Poland. On startup, we perform
initial pre-processing of the transfer patterns based on a GTFS timetable informa-
tion. Afterwards, we compute for approximately 1000 source destination pairs the
public transport routes. Experiments are performed on a regular desktop machine,
computation time is measured in milliseconds. The resulting distribution of compu-
tation times can be seen in Figure 8, please note logarithmic scaling.
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As can be seen in the Figure 8 our algorithm is an order of magnitude faster than
existing transit computation schemes. However, initial pre-processing is exhaustive
and required about 8 hours, this can easily be reduced by distribution of the initial
preparations.

7 Discussion and Future Work

In this work, we focused on fast transit route computation in a changing world.
We highlighted the shortcomings of existing algorithms, that are either very slow,
or do not incorporate real-time transit information. We overcame these limitations
by introduction of Dynamic Transfer Patterns. In this routing scheme, we applied
the basic idea of (Bast et al. 2010) but created additional links in the patterns for
transit connections that occur due to the delays. Thus, the modified Transfer Patterns
can be applied also in dynamically changing environment. The method was made
publicly available as ready-to-use virtual machine and as source code integrated
in the commonly used OpenTripPlanner. As input our implementation depends on
the commonly used GTFS and GTFS Realtime data structures that encode transit
information.

The performance of our implementation in comparison to existing methods was
measured using real-world data, our method achieved computation times that are an
order of magnitude faster than existing ones. However, precomputation is quite ex-
haustive. For this step we propose future research on biasing the precomputations to
the most prominent ones. Visual inspection of the delays, as performed in (Mazim-
paka and Timpf 2016), can help to prioritize certain delay computations. Moreover
the precomputation runs for every station separately, this step could probably benefit
from parallelization. These two points are subject for future research.
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