
Article

GeoSpatial IoT - the Need for an Event-Driven
Spatial Data Infrastructure

Matthes Rieke 1,*,†, Lorenzo Bigagli 2,†, Stefan Herle 3,†, Simon Jirka 1,†, Alexander Kotsev 4,†‡,
Thomas Liebig 5,†, Christian Malewski 6,†, Thomas Paschke 7,† and Christoph Stasch 1,†

1 52◦North GmbH, Münster, Germany
2 National Research Council of Italy, Institute of Atmospheric Pollution Research, 50019 Sesto Fiorentino

(Florence), Italy
3 RWTH Aachen University, Geodetic Institute and Chair for Computing in Civil Engineering & GIS, Aachen,

Germany
4 European Commission, Joint Research Centre, Digital Economy Unit, Ispra 21027, Italy
5 TU Dortmund, Dortmund, 44221, Germany
6 Wupperverband, Wuppertal, 42289, Germany
7 Esri Deutschland GmbH, Kranzberg, Germany
* Correspondence: Matthes Rieke (m.rieke@52north.org; Tel.: +49-251-396371-51)
† All authors contributed equally to this work.
‡ The views expressed are purely those of the authors and may not in any circumstances be regarded as

stating an official position of the European Commission.

Abstract: The nature of contemporary Spatial Data Infrastructures lies in the provision of geospatial 
information in an on-demand fashion. Though recent applications identified t he n eed t o react 
to real-time information in a time-critical way. In particular, research efforts in the field of 
geospatial Internet of Things have identified substantial gaps in this context, ranging from a lack of 
standardization for event-based architectures to the meaningful handling of real-time information as 
”events”. This manuscript presents work in the field of Event-driven Spatial Data Infrastructures with 
a particular focus on sensor networks and the devices capturing in-situ measurements. The current 
landscape of Spatial Data Infrastructures is outlined and used as the basis for identifying existing gaps 
that retain certain geospatial applications from using real-time information. We present a selection of 
approaches - developed in different research projects - to overcome these gaps. Being designed for 
specific application domains, these approaches share commonalities as well as orthogonal solutions 
and can build the foundation of an overall Event-driven Spatial Data Infrastructure.

Keywords: event-driven architectures, asynchronous transactions, sensor web, spatio-temporal data, 
real-time data, stream processing, spatial data infrastructures, sensor networks

1. Introduction

Historically, the discoverability and accessibility to geospatial content was difficult, as data was
not available online, was encoded through different proprietary formats and was often not documented
through metadata [1]. These were among the main technical arguments for the establishment of spatial
data infrastructures (SDIs) during the 1990s. Nowadays, the situation is completely different. The rapid
emergence of technologies such as the Internet of Things (IoT), combined with the increased importance
of the private sector and citizens as users and creators of content is generating unprecedented amounts
of data. Not only are the heterogeneity and volumes of data rapidly increasing, but they are produced
in near-real time conditions. This, combined, poses completely new challenges regarding the utilisation
and processing of data. Geospatial data is no exception. In particular, addressing the (spatio-)temporal
dimension requires (i) new analytical methods, (ii) innovative means for encoding and exchanging
spatio-temporal data from constrained devices, and (iii) new standards for data interoperability. That is
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why [2,3] highlight the need for a theoretical framework that would cater for a process-based approach
towards data as a complement to the very well established foundations of contemporary GIScience.

In this manuscript, we elaborate on eventing in GIScience. Our objectives are twofold - on one
hand we identify limitations and corresponding challenges of current Spatial Data Infrastructures for
an adequate incorporation of time series, and on the other we elaborate on approaches on how to
tackle them. The latter is illustrated through specific case studies.

Structurally, our work is divided into five sections. Following a brief introduction (Section 1)
we illustrate the current state of ’eventing’ in GIScience (Section 2). A description of architectural
patterns and the challenges that remain is provided in (Section 3). Subsequently, we discuss different
new approaches for Eventing which have been developed for specific application domains (Section 4).
Finally, we conclude by summarising our findings and discuss open issues in (Section 5).

2. Eventing in GIScience: State-of-the-art

In this section we (i) provide an overview of the theoretical foundations of eventing in GIScience
and share several definitions of selected frequently used terms, (ii) position eventing in the context of
spatial data infrastructures, (iii) outline the most relevant standardisation initiatives, and (iv) describe
relevant software products.

2.1. Spatial Data Types

During the last years, the availability and granularity of geospatial data has been rapidly growing.
Additionally, spatio-temporal data streams provide multiple opportunities in fields such as smart
cities, environmental risk assessment, precision farming and disaster response. All of those application
domains require algorithms that process massive amounts of spatio-temporal data in near real-time.
Historically, spatio-temporal data comes in a variety of forms and representations, depending on the
domain, the observed phenomenon and the acquisition approach. Three types of spatio-temporal data
streams can be outlined [4,5], namely spatial time series, events, and trajectories.

• A spatial time series consists of tuples (attribute, object, time, location)
• An event is triggered from a spatial time series under certain conditions and contains the tuples

verifying these conditions
• A trajectory is a spatial time series for a particular moving object. It contains the location per time

and is a series of tuples.

The automated detection of events in spatio-temporal data streams is a well-established research
area (see e.g. [6] for an overview). Depending on the application, the event detection can analyse
single trajectories (e.g. an aircraft), spatio-temporal measurement time series, or heterogeneous data
streams. The examples below highlight the capabilities of each approach:

• Spatio-temporal measurements: A spatio-temporal value can focus on a specific spatially limited
observation (e.g. water gauge measurements) or span regions (e.g. traffic flow, air pollution or
noise). Sudden changes of such values can indicate anomalies but might also be caused by a
failure of measurement equipment. Distinguishing between these two cases is a crucial capability
required for spatio-temporal measurement processing

• Individual mobility and group movement: both fields are related in terms of acquisition methods
(e.g. surveillance cameras) and make use of pattern or sequence recognition to identify certain
events (e.g. detection of unusual behavior [7], hazardous pedestrian densities [8])

• Heterogeneous sensor networks: in the past years the design of sensor stations progressed more
and more to integrated small-scale solutions (sensing IoT devices, smart sensors [9]). Therefore,
maintainers of established sensor networks look into ways of integrating these into their existing
architecture. Applications built for these sensor networks need to deal with the heterogeneity of
the different observation devices.
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2.2. Spatial Data Infrastructures

Spatial Data Infrastructures (SDIs) built since the term started to be used, in the early 1990s, have
brought multiple technological, organisational and legal novelties that have increased the availability
of spatial data for online reuse. The resulting benefits have been recognized, for example, in Europe,
where a law obliges public sector providers of environmental data to comply with the requirements of
the Infrastructure for Spatial Information in Europe (INSPIRE) Directive [10].

In accordance with INSPIRE, data providers shall (i) create metadata, (ii) establish network
services, and (iii) harmonise their dataset in accordance with commonly agreed data specifications.
The aforementioned network services are to be put in place in order to enable (i) discoverability of data
through their metadata, (ii) interactive web-based viewing, (iii) download, and (iv) transformation
from non-harmonised to harmonised.

As a classic SDI, INSPIRE has been conceived as a Service-Oriented Architecture (SOA), based
on the Client-Server model and on the request/reply Message Exchange Pattern (MEP). Meanwhile,
the development of modern applications and advanced distributed systems, such as peer to peer
networks, have increasingly highlighted the shortcomings of the request/reply pattern, typical of SOA
and classic SDIs.

Download services are particularly interesting with these regards, as they effectively provide
access to the spatial (and spatio-temporal) data made available within the SDI. On a conceptual level,
download services are typically defined to follow the request/reply communication model, where a
client makes a request and the server responds synchronously, with either the requested information
or a failure. This provides relatively immediate feedback, but can be insufficient in cases where the
client is waiting for a specific event (such as data arrival, server changes, or data updates).

Shortly after SOA, another architectural model has emerged, named Event-Driven Architecture
(EDA), which emphasizes the ability to monitor and react to events. There is abundant literature on
the relationship between SOA and EDA, whose combination is sometimes referred to as Event-driven
SOA, or also SOA 2.0 [11,12]. In synthesis, the two approaches can be seen as complementary to each
other, the main difference being the reactive nature of SOA request/reply pattern, as compared to the
proactive nature of EDA, characterized by the publish/subscribe interaction, described in the following
section. Within this context, a recent activity [13] investigates the use of the OGC SensorThings API as
an INSPIRE download service.

2.2.1. The publish/subscribe pattern

The publish/subscribe MEP is distinguished from the request/reply MEP by the asynchronous
delivery of messages between a server and a client and the ability for the client (i.e. the Subscriber) to
specify an ongoing (persistent) expression of interest. Note that such expression of interest requires
the server (i.e. the Publisher) to maintain internal state about subscribing entities and therefore the
fundamental publish/subscribe interaction is stateful.

The publish/subscribe MEP can be useful to reduce the latency between event occurrence and
event notification, as it is the Publisher’s responsibility to publish a message when the event occurs,
rather than relying on clients to anticipate the occurrence. The publish/subscribe MEP can also be
used to decouple message production from message consumption by allowing messages to be passed
through a third party (a message broker). This allows entities in a system to be changed (with respect
to implementation, network location, etc.), as long as the agreed-upon message format and publication
location remain the same.

Two primary parties characterise the publish/subscribe interaction style: a Publisher, which is
publishing information, and a Subscriber, which expresses an interest in all or part of the published
information. Publishers and Subscribers are fully decoupled in time, space, and synchronization [14].

Two other actors involved are the actual entity to which data is to be delivered, i.e. the Receiver,
and the entity actually delivering the data, i.e. the Sender. In many cases, the Subscriber coincides with
the Receiver. However, the two roles may be distinguished, for example in a use case where a system

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 August 2018                   doi:10.20944/preprints201808.0132.v1

http://dx.doi.org/10.20944/preprints201808.0132.v1


4 of 26

manager, acting as a Subscriber, sets up the information flows from Publishers to a number of other
system entities that act as Receivers. Similarly, the Publisher and Sender roles are often implemented
by the same entity, but may be segregated. For example, the Sender role may be implemented by
a chain of entities, possibly unaware of the ultimate recipient of their messages and of the overall
architecture of the system into which they inject messages.

A publish/subscribe model typically includes several functional components, which are variously
implemented by the existing technologies (e.g. WS-Notification, WS-Eventing, ATOM):

• Filtering semantics - selecting desired information.
• Subscription semantics - duration of subscription, renewal of subscription, cancellation.
• Publication semantics - what, when, where, who of the published information.
• Wire/delivery protocol - reliable delivery, link failure detection, at-most-once or at-least-once

delivery, firewall solution.
• Security - transport encryption, authentication, policy enforcement, etc.
• Capabilities advertisement - i.e., what PubSub capabilities a service offers.

2.3. Relevant standards

2.3.1. Open Geospatial Consortium

As illustrated in Figure 1, the Open Geospatial Consortium (OGC) has conducted much work, in
the past, on event-driven models and architectures (see also [15,16]).

In the years 2006-2011, several lines of activities eventually consolidated into a revision of the
Sensor Planning Service (SPS 2.0), an interface for querying a sensor about its capabilities and tasking
it, and a version-aligned Standard Service Model (SWES 2.0) for the OGC Sensor Web Enablement
initiative.

Both standards contained provisions for publish/subscribe interactions, which were increasingly
seen as a generally useful enabler for the OGC standard baseline, even beyond the Sensor Web realm.
In 2010, a specific PubSub Working Group was started, to define a self standing OGC standard for
publish/subscribe, introduced in the next section.

OGC PubSub

The OGC Publish/Subscribe Interface Standard (in short, PubSub) describes a mechanism to
support publish/subscribe requirements across OGC data types, such as coverages, features, and
observations, and service interfaces, such as Sensor Observation Service (SOS) and Catalogue Service
for the Web (CSW). The standard, officially approved in February 2016, is a long-awaited building
block in the OGC suite of geospatial standards, and a fundamental enabler towards an Event-driven
SDI. It has been successfully applied to several application domains, including the Sensor Web and
Aviation [17].

The rationale for PubSub can be summarized as follows:

• OGC service clients are interested in subscribing to information already provided by OGC services.
• OGC services have developed relatively mature and specialized request/reply mechanisms for

accessing and filtering the information provided (e.g. the Filter Specification for general-purpose
filtering).

• Such filtering semantics can be used for implementing publish/subscribe use-cases and need not
be re-invented or generalized.

PubSub consists of two parts: (i) a Core document [18] that abstractly describes the basic
mandatory functionalities and several optional extensions, independently of the underlying binding
technology; (ii) and a SOAP binding document [19] that defines the implementation of PubSub in
SOAP services, based on the OASIS Web Services Notification (WS-N) set of standards [20].
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Figure 1. Overview and timeline of relevant OGC eventing-related work in the last decade. The rows
show the roadmap of various documents; milestones are indicated with their version and their OGC
reference number and type (Best Practice, Discussion Paper, Implementation Standard, Engineering
Report); bold fonts highlight official OGC standards. See at the end of the manuscript for a complete
list of abbreviations.

The scope of the OGC PubSub Standard Working Group also includes a RESTful binding
document (currently in draft status) that will specify how to realize the PubSub functionality in
REST/JSON services. Additional extensions have been proposed in the framework of the OGC
Testbed-12 initiative: a specific PubSub 1.0 extensions for CSW 2.0.2 and 3.0, leveraging on standard
functionalities, data models, and semantics to enable sending notifications based on user-specified area
of interest and/or keywords; and a basic mechanism to PubSub-enable any generic OGC Web Service
leveraging on its existing request/reply interaction, i.e. usual requests as filters, usual responses as
appropriate updates/data pushes, existing semantics and syntax expressiveness [21].

Web Processing Service

The OGC Web Processing Service (WPS) standard is based on the synchronous request/reply
model and implements the classical Remote Procedure Call communication paradygm. To mitigate
sychronization coupling between clients and servers and avoid blocking the caller thread while waiting
for the reply of a remote invocation, the standard allows the client to request a handle through which
the actual return value can be accessed in the future, when needed [14].

Orchestration and automated processing has been achieved with WPS-based service architectures
[22,23]. Further work has been done on event-driven architectures based on WPS workflows. An
extension to the WPS, called the Web Event Processing Service (WEPS) has been developed to allow
time series event pattern matching [24]. This architecture is based on classic request/response Execute
requests to manage user subscriptions to specific events.

2.3.2. IoT Protocols

Events like those defined in section 2.1 are often emitted by resource-restricted devices in IoT
settings. In literature, plenty discussion papers can be found about the optimal IoT application protocol
to send and collect the related messages (e.g. [25]). In fact, every protocol has its advantages and
disadvantages.
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HTTP

HTTP1 is well known and simple but because of its request/response model, it cannot be used
to emit events and initiate data streams. Also, it has a large overhead and cannot implement a 1-to-n
communication. Protocols which use a push-mechanism like a publish/subscribe MEP seem more
suitable for event dissemination by IoT devices.

CoAP

The Constrained Application Protocol (CoAP)2 is based on UDP and implements also the
request/response-pattern. It is often termed as ”HTTP for UDP” since it has a similar method set
compared to HTTP and REST-APIs can be realized. However, it also includes an ”observe” feature
which can be used to accomplish a server-based push-mechanism. It is very efficient and aims for
Wireless Sensor Networks. But since it is based on UDP, it may be problematic in IoT applications.

XMPP

The Extensible Messaging and Presence Protocol (XMPP)3 is based on XML and implements
push-based communication mechanisms. It can be extended by so-called XEPs, some of them are also
defined specifically for IoT purposes. Because it is famous for chat clients, it has been implemented in
a variety of programming languages with different features. A major drawback is the large overhead
which is created by the use of XML encodings. Therefore, it is barely used in IoT settings.

MQTT

The Message Queuing Telemetry Transport (MQTT) [26] is a standardised messaging protocol
implementing the publish-subscribe MEP. It is designed to have a minimal overhead for message
payloads thus allowing the application in low-bandwidth networks as well as embedded devices.
These characteristics make it a perfect fit for IoT applications, still the usage of MQTT has grown
beyond.

The core concept of MQTT is the topic. Clients can subscribe to topics in order to receive
corresponding messages. Topics can represent a hierarchy which allow subscribers to subset
data stream. E.g. a topic such as sensor-platform-1/NOx would publish NOx measurements of
sensor-platform-1. A subscriber may register for the topic sensor-platform-1/+, which has a wildcard for
the second hierarchy level, and, thus, not solely receives NOx messages but also other phenomenon
measurements.

Many software projects have been established for MQTT, ranging from broker implementations
to client libraries. Besides the TCP protocol, many brokers support WebSockets to enable seamless
integration into (web) user interfaces.

GeoMQTT

GeoMQTT extends the MQTT protocol by spatio-temporal filtering capabilities [27]. While the
original protocol tags every message with a topic name and matches the corresponding interests, the
spatio-temporal extension also adds a geometry and a time stamp or time period to each published
event. Given these three dimensions, the protocol can be used by clients to publish spatio-temporal
events or processes. Subscribers may use additional spatial and temporal filters to register their
spatio-temporal interests with the message broker, which validates the filters against the incoming
events and notifies the corresponding clients. The spatial filter consists of a geometry defined by

1 https://tools.ietf.org/html/rfc2616/
2 https://tools.ietf.org/html/rfc7252/
3 https://tools.ietf.org/html/rfc6120/
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common encoding standards and a spatial relation according to the DE-9IM model [28]. The temporal
filter uses time intervals and a temporal relation which is defined by Allen’s interval algebra for
interval-interval relations [29] or Vilain’s interval-point relations [30].

WebSub

Formerly known as PubSubhubbub [31], WebSub is an open protocol for publish/subscribe
communication. It is well-established among web media and related content providers. One of its
prominent use cases is the provision of new content from providers (e.g. blogs such as Wordpress or
Medium.com) to news feed service providers (e.g. Feedly or Flipboard).

WebSub builds upon the publish/subscribe model and specifically introduces a third party, the
Hub. The Hub interacts as an intermediate layer between Publisher and Subscribers. Compared to
other publish/subscribe technologies, WebSub focusses on the information that new content or data is
available without necessarily distributing the actual content. This is achieved by the concept of the
”Light ping”: the Publisher informs the Hub about content availability, and the Hub subsequently
informs the Subscribers. Besides the content location, the ”Light ping” only features a small set
of information (e.g. title, abstract) and Subscribers may decide to fetch the full data. WebSub is a
lightweight protocol with low bandwidth, but implies that the actual data is available via the HTTP
protocol on the providers side.

2.4. Relevant IoT Event Processing Software

2.4.1. Open Source solutions

The increasingly deployed location-aware IoT devices result in an exponentially growing amount
of spatio-temporal events and streams. The desire to process these data streams in a real-time
manner and to finally support decision-making processes drives the development of suitable tools and
algorithms for event processing.

Event processing divides into Complex Event Processing (CEP) and Distributed Stream Processing
(DSP). Both can be applied to spatio-temporal data streams. CEP solutions analyse concurrent events
and emit derived new events based on their combination. The complex part of such solutions represents
fusing and synthesizing events from multiple sources, while the event processing refers to checking the
joint events against query patterns. Traditionally, CEP frameworks are implemented with centralized
architectures and provide no scalability. DSP focuses on the high volume and velocity of data streams.
These tools are scalable and have different requirements than CEP systems. One example is the Kappa
architecture described in Kreps [32].

Esper

Esper4 is a multi-lingual (Java and .NET) CEP framework. It works on streams of data and
allows to apply aggregate functions as well as pattern matching, also across multiple data streams. By
offering an SQL-like Domain Specific Language, the Event Processing Language (EPL), Esper provides
a transparent and easy way of defining these functions and patterns. The EPL allows to apply basic
statistical functions such as minimum/maximum, sums and counts or averages. Filtering data can be
achieved by applying basic comparisons (e.g. greater than) on the stream data. It supports different
types of data windows (time-based, count-based). While Esper is an Open Source project, an Enterprise
edition is available which builds upon established Big Data frameworks such as Apache Kafka (see
below) to support horizontal scaling and fault-tolerance mechanisms.

4 http://www.espertech.com/esper/
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In the context of Eventing in GIScience, Esper can be understood as a framework that is integrated
under the hood of specific components, providing essential business logic which is required to support
different use cases such as the analysis of time series data stream.

Apache Storm

Apache Storm5 is a real-time stream processor written in Java and belongs to the group of DSP
systems. Apache Storm is used in the research to analyse spatio-temporal data streams. Zhang et al.
[33] utilise Apache Strom to implement a distributed spatial index for moving objects and, finally,
provide real-time traffic decision support. Mattheis et al. [34] build a scalable map matching system
with Apache Storm.

Storm uses topologies as an application abstraction to model units of computation. A topology
forms a directed acyclic graph with different nodes which process the data while the data stream
advances in the graph. These nodes can either be input units for data tuples, the spouts, or processing
units, the bolts. The flow of the data tuples in the graph and therefore between different physical
machines is controlled by different grouping types. For instance, the field type groups according to a
key in the data tuples. The communication and coordination of the distributed processing is achieved
by a manager nodes, the Nimbus. Storm implements a backup and acknowledgement mechanism.
It ensures that each data tuple is either processed once or if a failure occurs, it is reprocessed by the
topology.

Besides Apache Storm, other DSP solutions are based e.g. on Apache Flink6 or Apache Spark
Streaming7. A performance comparison between these different frameworks can be found e.g. in
Lopez et al. [35]. For all these solutions, the data stream provisioning and delivery plays an important
role, which can be accomplished by Apache Kafka.

Apache Kafka

Like Storm and Spark, Kafka8 is a top-level software project of the Apache Software Foundation. It
is designed to be a low-latency stream-processing framework in the Java ecosystem. In settings with
distributed computing workers, Kafka has been established as a message broker that operates as a
publish/subscribe service and can be used as multi-node load balancer. Events in Kafka are called
messages. The software abstracts message streams into topics which operate as buffers or queues. Each
topic is split into a set of partitions. Kafka is designed to work in a cluster environment. By replicating
the partitions of a topic to multiple cluster nodes, Kafka provides not only a built-in failover system
but also a highly effective architecture to apply distributed stream processing.

Kafka provides a set of APIs which allow developers to plug-in to the platform:

• Consumer API: allows a component to listen to specific topics of interest
• Streams API: intermediate components can apply processes and algorithms on the message stream

and provide the result back to Kafka on a dedicated topic
• Connectors: used to integrate components (input or output) that are not part of the platform itself

(e.g. databases)

Kafka is a key pillar in Java-based Big Data and IoT architectures (e.g. [36]). It is able to integrate
with Apache Hadoop9 and other related Apache frameworks such as Storm and Spark (see above).

5 http://storm.apache.org/
6 https://flink.apache.org/
7 https://spark.apache.org/streaming/
8 https://kafka.apache.org/
9 http://hadoop.apache.org/
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2.4.2. Proprietary Solutions

Esri introduced an event based processing framework written in Java back in 2012, which is
nowadays called ArcGIS GeoEvent Server. The GeoEvent Server uses different input and output
connectors to ingest data streams from a variety of sources and formats, process them in a common
event format and distribute the events to different systems inside and outside of Esri’s Web GIS
platform solution [37].

From the 2018 10.6 release on, the GeoEvent Server started to utilize Apache Kafka as an
underlying messaging framework, replacing RabbitMQ that was used in former versions. This
allows to harvest the benefits of Apache Kafka, as described above, in order to scale horizontally and
run multiple GeoEvent Server in a multi-machine site for parallel event processing [38].

Esri is also using Apache Spark as a framework for distributed processing of data in their
ArcGIS GeoAnalytics Server solution (see Figure 2) to analyze large amounts of spatio-temporal data
[39]. It will also be used in a new, highly scalable Software as a Service solution that will provide
comprehensive geo-spatial analytic options for the IoT world as part of the ArcGIS Online platform.
Here a combination of Apache Kafka and Apache Spark is used for both streaming and batch analytics
[40][37].

Figure 2. Overview of ESRI spatio-temporal data streaming technology.

Other big players of the IT industry have established messaging systems which enable
stream-based processing within their cloud architectures. In 2015 Google introduced Cloud Pub/Sub
which allows the scalable and performant processing of data streams with a special focus on the
requirements of smart devices and IoT applications (high diversity, high throughput). It follows
the publish/subscribe pattern (see section 2.2.1) and integrates natively with the other components
available in the Cloud platform as well as external components via well-defined APIs. A similar
approach was taken by Amazon with the introduction of AWS IoT Core, with a more dedicated focus
on the integration aspects required for IoT and other smart devices.

3. Gaps in Event-driven SDI

The previous sections have introduced on the one hand the state of the art of spatial data
infrastructure concepts and technologies and on the other hand important technological developments
to enable event-driven information flows. However, there are still many open research challenges
which need to be addressed before enhancing current spatial data infrastructure with event-driven
functionalities. These challenges form the motivation for our work and will be introduced in the
following subsections.
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3.1. Defining and Determining Events

There are many definitions of the term ”event” available, and the existing definitions of differ.
From a conceptual perspective, we described the characteristics of events in Section 2.1. In addition
and from a broader perspective once can rely on the definition that an ”event is a notable thing that
happens inside or outside your business” [11]. At the same time, this definition opens up a series of
further questions regarding the technical definition of events in practical applications.

First of all, it is necessary to define what a ”notable thing” is. For the purpose of observation data
an event would be a notable observation within an incoming observation data set/stream. This can
for example be characterised by a certain range or pattern of observation values. A common example
would be the exceedance of threshold values. Other typical events might be properties such as the
rate of change (in case of scalar observations), the occurrence of specific values (especially in case of
categorical or Boolean observations), the presence of mobile objects within defined areas (geofencing),
or the absence of new observation values within a given period of time (e.g. as an indicator for sensor
failure).

As a result of the broad range of possible event types, users need a mechanism to define the events
they are specifically interested in. Although there have been different previous approaches such the
OGC Event Pattern Markup Language (EML) Discussion Paper [41] or the Event Processing Language
(EPL) of the Esper framework (see Section 2.4.1), a common interoperable definition language suited
to the needs of geospatial observation data streams is still missing.

Another aspect in the context of event definition is the distinction between event filtering and
event processing. In the following we will use the first term for the process of delivering only
those observations from a data stream that fulfil certain user-defined criteria (e.g. only forwarding
those measurements above a given threshold). The second term, event processing, will refer to the
generation of new, higher level information from an incoming observation data stream. For example,
certain patterns within a data stream may indicate an alter situation. In this case, not the individual
measurements themselves are delivered but the higher-level information that an alert has occurred.
While event filtering is already supported by PubSub, the generation of new, higher level information
is not yet covered by this specification.

3.2. Handling Large Amounts of Observation Data

Another challenge is the handling of large amounts of observation data. Depending on the
application scenarios, data from very large sensor networks with potentially very high temporal
resolution needs to be analysed. For dealing with such large amounts of data, there are different
solutions available (e.g. the Big Data solutions of Esri (see section 2.4.2) or the Technical University of
Dortmund (see section 4.3)). However, this does not yet resolve all issues that are specific to geospatial
observation networks. For example, due to constraints in the data transmission capacity of wireless
sensor networks, a distributed detection of events across many nodes may be needed before centralised
data processing tools may become applicable.

Another challenge lies in the heterogeneous nature of input data for event detection. For example
many applications require the fusion of data streams from different sources (e.g. weather data and
hydrometric measurements in order to generate flood warnings). In this case it may become necessary
to work with large data sets that have different temporal and/or spatial resolutions so that further
pre-processing steps become necessary.

In summary these different aspects require approaches how to determine the performance
measures that need to be fulfilled by a potentially distributed observation network and event processing
infrastructure. Relevant parameters for this question may comprise the number of distributed
observation data sources, data transmission constraints, the amount of incoming data (e.g. temporal
and spatial resolution), but also the number of potential users and the event detection tasks they may
submit.
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3.3. How to Apply Event-driven Data Flows into Spatial Data Infrastructures

Conventional spatial data infrastructures do not provide means for receiving up-to-date data
without delay and without manual interaction (see Section 2.2). Typically, such infrastructures are
based on pull-based communication patterns. Thus, an approach is needed how to enhance such
existing infrastructures without breaking established architectures and communication flows.

One important aspect in this regard is the event-enablement of existing data sources such as
sensors, databases, and Web services. While for each of these elements event-driven extensions from
mainstream IT are available (see Section 2.4), the integration of these technologies into extended spatial
data infrastructures is still an open work item. In this regard the integration of geospatial IT standards
with emerging mainstream information technologies will be a special challenge, as many current
spatial data infrastructure concepts were developed independently from mainstream approaches
beyond the geospatial domain. A central element within spatial data infrastructures are catalogues
that allow the discovery of geospatial data sets as well as Web services. These catalogues, however, do
not yet explicitly support the discovery of data streams or services for managing event subscriptions.
To close this gap, the development of dedicated metadata profiles will be necessary.

Finally, the consideration of event-driven data flows opens up a new dimension of data analysis
and processing workflows within spatial data infrastructures. Besides simple ideas such as triggering
certain workflows in case of a specific event, new opportunities for chaining and orchestrating fully
event-driven, real-time processes become available.

3.4. Security and Reliability

In conventional spatial data infrastructures, the data transfer can be easily verified on the client
side. If a client issues a pull-request, the data flow is complete as soon as the client has received the
complete response. Thus, there is no significant risk of losing messages. In event-driven infrastructures,
however, the client has no a-priori knowledge when to expect an incoming message. For example, if
an event is detected in a data stream, a notification is sent to a subscriber. However, the subscriber
only know about the event, after the notification has arrived. If the notification is lost, the users would
not know about this. Thus, the ability to guarantee the delivery of notifications about events through
the whole processing workflow is essential for a multitude of use cases (e.g. emergency response,
prevention).

Furthermore, security aspects (e.g. for managing subscriptions and for ensuring that
only authorised users receive notifications) need to be considered when enhancing spatial data
infrastructures with event-driven data flows.

3.5. Meaningful events

Also the semantics of event notifications are an important aspect that needs to be considered.
For example, a formal description of the meaning of a specific notification (e.g. what does “alert”
or “threshold exceeded” mean) would increase interoperability between different sources of event
streams. Another important aspect is the provenance of event notifications. Usually, users would not
only be interested in the notification itself (e.g. an alert message”) but also in the underlying input
data that have triggered the notification (e.g. the observed water level and weather observations that
have triggered a flood warning). Thus, mechanisms are needed for providing the relevant underlying
input data that have caused the transmission of a notification.

3.6. Integrating Event-driven Data Flows into Applications

While the underlying event processing infrastructures may reach a high level of complexity, the
usability of that infrastructure for users with potentially no technological background knowledge is of
high importance. Thus, we consider a need for further research on how to enable users to define the
events they are interested in or to manage event processing and notification workflows. At the same
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time, also the end-user dissemination of data and events needs further investigation. For example,
typical portrayal services such as the OGC Web Map Service are designed for delivering rather static
map views. Thus, further work is necessary to develop ideas how dynamic event streams can be
integrated into data visualisation components of applications.

4. Application domains

As the requirements and therefore also solutions for provisioning and processing of near-real time
data vary in the different domains of GIScience, we describe the developed approaches within four
important application domains: environmental monitoring, risk monitoring, disaster response and
logistics. Still, eventing is not limited to these domains, but most of the solutions can be transferred to
others with minimal effort.

The following sections present solutions which have been developed in the scopes of different
research projects. We therefore start with introducing the overall use cases, followed by the importance
of real-time data and event processing. The identification of domain specific gaps conclude the
individual sections.

4.1. Environmental monitoring

Providing meaningful real time information becomes a more important pillar in several areas of
environmental monitoring. Ranging from air quality threshold monitoring to the detection of oil spills,
the time-critical interpretation of one or more phenomena is the main task of event architectures in this
application domain. This section provides an overview on architectures developed in a set of research
projects which all build upon the same design principal.

4.1.1. Architectural Approach

For an event-driven architecture in the environmental monitoring domain the Sensor Web concepts
play an important role. The Sensor Observation Service (SOS) is one central component, providing
capabilities to manage and provide time series for in-situ observations and measurements. One
project building an architecture around this is AirSensEUR [42]. It’s goal was to design a low-cost
open hardware IoT device (a ’sensor shield’, see Figure 3) with a Linux-based software platform
for air quality monitoring. The overall objective of the platform is to simultaneously meet the legal
requirements of two European Union Directives - the Air Quality Directive with regards to the quality
of observation data, and the INSPIRE Directive [10] with regards to data download. The platform
targets to measure the quality of ambient air (CO, O3, NO and NO2) at low concentration levels. This
is achieved through a selection of sensors and a transparent and open data-treatment process. The
latest version of the device is extended to measure Radon, CO2 and particulate matter.

The transfer of data from the sensor shields is handled by the transactional profile of the 52 ◦North
SOS implementation. Data are pushed on a regular interval to the SOS server. Subsequently, a
post-processing through the use of an artificial neural network is applied to ensure a high level of
measuring quality. The 52 ◦North Helgoland web client, as well as a smartphone app developed within
the MYGEOSS project [43] consume data from the SOS. The smartphone app provides a notification
service based on (i) exceedance of air quality thresholds as defined in the EU Air Quality Directive,
and (ii) spatio-temporal vicinity of the users to a given sensor shield. These notifications are derived
from the time series data through interaction with the 52 ◦North timeseries API.

Also in the ocean sciences community, several projects within the European Horizon 2020
framework address the need for event-driven data dissemination approaches with regards to
environmental observations. The NeXOS project [44] aimed at the development of new sensing
technologies in combination with an interoperable Web-based data exchange infrastructure. Many
sensors deployed in the NeXOS infrastructure deliver a significant amount of in-situ observation
data. While the archiving of these data streams is one important scientific requirement, the detection
of relevant events within these streams is another aspect. For example, a hydrophone is capable of
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Figure 3. The AirSensEUR platform. Source:[42] (modified)

performing acoustic underwater measurements. These measurements can subsequently be used for
detecting marine mammals which are recognisable as certain specific patterns within the acoustic data.
An event-driven dissemination of such detection events, will be used for notifying scientists as soon as
interesting, new data is available.

A second aspect that is relevant in the oceans research community is the event-driven
dissemination of observation data collected by autonomous sensor platforms such as gliders. Often
such platforms operate in very remote areas of the world so that the transmission of data can become a
cumbersome task - a situation which is well-known in many applications of IoT devices. In the case of
remote devices acting in the open oceans, cellular networks are not available and data has be transferred
via satellite links. Thus, it is desirable that scientists are provided with an approach to request the
automatic and immediate delivery of data about certain user-defined events (e.g. observation of
properties beyond a given threshold or specific (critical) operating status data of the platform) while
the large volume of all measured data is recovered later on when the platform has reached the shore
again. The BRIDGES project [45] aims (among other goals) at a system architecture to address such
use cases (see Figure 4).

In comparison to the above, the NoiseCap10 citizen science experiment developed a customized
architectural approach. Based on the outcomes of the Energic-OD project [46], NoiseCap focusses on
determining the reliability of commercial cell phones in estimating indoor noise pollution. The system
builds on the free and open-source Noise-Planet11 scientific toolset for environmental noise assessment,

10 http://essi-lab.eu/noisecap
11 http://noise-planet.org/
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Figure 4. Sensor Web Architecture for Environmental Monitoring.

which includes the NoiseCapture Android application, developed within Energic-OD and allowing
users to measure and share their noise environment. Each noise measurement is annotated with its
location and can be displayed in interactive noise maps, within the application and on the Noise-Planet
portal. NoiseCap focuses on air traffic noise, which is quite well-characterized and identifiable in
indoor settings. Besides, this choice improves the reproducibility of the results. Hence, the experiment
targets the specific group of citizens living nearby the airport of Florence, Italy.

User participation in NoiseCap is on a completely voluntary basis. In particular, participating
citizens are free to choose whether to measure a given landing event or not. Since the measurement
protocol requires some preparation (e.g. turning off the television and such), the researchers overseeing
the experiment (for an illustration of the activities see Figure 5) have quickly realized the importance
of notifying each user with a personalized message, at least a few minutes before the passage of an
aircraft over her/his measurement spot (specified by the user during registration). Such “notification
service” has been implemented leveraging ATC ADS-B Mode S data. An ad-hoc procedure analyses
the Mode S records to identify the aircraft approaching the airport of Florence, whose trajectories are
then tracked. When a trajectory matches a specified landing pattern, the service notifies the subscribers
with a personalised message providing an estimated time of the overflight.

4.1.2. Lessons Learned

The AirSensEUR project implements an eventing layer in a non-standardised manner while the
NeXOS and BRIDGES projects propose an approach based on PubSub [17]. All three initiatives have
identified gaps which need to be solved before a stable deployment is possible. This comprises on
the one hand the need for more lightweight interfaces (i.e. REST/JSON) instead of XML - due to the
remote locations and transmission limitations - and on the other hand a common approach that allows
users to define the events they are interested in (i.e. event filters). Furthermore, a need for user-friendly
applications to manage event subscriptions and an interoperable approach for defining event filters
were identified as future requirements.

The implementation of the NoiseCap experiment has highlighted a substantial lack of free and
open standards and solutions for processing spatial time series, such as ADS-B Mode S data, to identify
events and apply event pattern matching. Therefore, transferring the developed system to a different
geographic area would require substantial adjustments to the underlying analysis of aircraft trajectories.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 August 2018                   doi:10.20944/preprints201808.0132.v1

http://dx.doi.org/10.20944/preprints201808.0132.v1


15 of 26

Figure 5. Activity diagram of the NoiseCap experiment.

A standardised approach to filter raw ADS-B data based on an area of interest (e.g. based on GeoMQTT
or PubSub) could help to develop similar applications in a sustainable manner. In addition, the lack
of support for client-side standards led to rely on proprietary solutions (e.g. Telegram-based push
messages) for notifying the volunteers.

4.2. Risk Monitoring

Real-time information and the identification of specific events play a central role in the field of
risk monitoring and early warning systems. In addition to phenomena measurements, simulation is a
key asset in the system architectures. The timely provision of inputs for such simulations therefore
is an important goal and can be achieved by utilizing event streams. On the other hand, the results
of a simulation model can also be materialized as a stream of events on its own. In the following we
provide architectural insights in the context of two independent use cases.

Seadikes and estuarine dikes embody the main coastal defence structure in Germany and protect
the low-lying areas against flooding. Dike failures in these areas may affect millions of people and
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economic values, which are worth protecting by monitoring the dikes and alerting in time. But today’s
early warning systems for dike failures are based exclusively on water level forecasts and do not
consider other parameters such as wind, waves, currents, heavy rainfalls or the condition of the dike
structure itself. In case of simultaneously-occurring adverse events, dikes may fail before the design
load is reached. A real-time warning system for dike failures has been established in the context of
the EarlyDike project (see [47]) which combines the detection of such different events. The system
stands on three pillars: simulation of the environmental impacts by forecasting storm surges and wave
loads, monitoring the condition of the dike itself by deploying new sensor technologies to measure the
moisture penetration and the deformation and, finally, simulating the extent of a flood in case of a dike
failure.

In analogy to seadikes, river dams are critical infrastructure and require continuous monitoring
with various observations. Although safety monitoring systems are available at these structures, there
remains a residual risk of failure. Potential damages associated with dams usually stem from the
failure of the structure due to overtopping, seepage water flow, and deformation. A critical dam
failure may claim lives and cause massive material damage. To further minimize the residual risk,
measures from different sources must be combined and analysed to extract maximum information. In
the research project TaMIS an already existing set of core SDI components has been complemented
with additional spatial time series and analysis components to form a dam information system [48].
One of the core requirements and complementing modules of such a system is an eventing module
that detects low level events, e.g. threshold violations or sensor failure and communicates detected
events to a responsible person.

4.2.1. Architectural Approach

The system architectures developed for seadikes, river dams and urban Infrastructures all share a
common technological baseline. The backends are based on a Sensor and Spatial Data Infrastructure
(SSDI), which follow the concept of the Sensor Web and, therefore, utilize OGC standards to make
the time series data of the simulations and the sensors accessible [49]. In the EarlyDike project, the
sensor platforms and the simulations publish their measured or generated events with lightweight
IoT protocols since they are adapted to resource-constraint environments. Especially the GeoMQTT
protocol (see Section 2.3.2) is used to establish a geo event bus to interconnect sensors, simulators and
the SSDI (see Figure 6). In order to connect the SWE service layer the geo event bus adopts concepts
of the Sensor Bus by Bröring et al. [50]. The geo event bus ensures the deliverance and provisioning
of real-time spatio-temporal events and data in time-sensitive architectures such as early warning
systems.

The dam monitoring system developed in the TaMIS project enhances the SensorWeb standards
with a lightweight access layer. The Sensor Event API adopts elements of PubSub [18]. It serves a set
of predefined rules, detected series events and allows a user to subscribe for a rule of a particular time
series. The Series API12 is based on the Sensor Observation Service Standard [52] and introduces the
time series object as a new element in the Sensor Web Enablement. The time series object is crucial to
get explicit references among Series API and Sensor Event API.

The eventing module validates incoming observations against a set of threshold rules through
database triggers when adding them to a harmonized spatial time series database schema. Stored
events are sent via Email to subscribed users in regular intervals. In order to make events accessible
through the web a web service has been developed that adopts concepts from the PubSub Standard
and provides a JSON/REST API. Figure 7 sketches the system’s architecture.

In the context of river dam monitoring where processes are of slow characteristic early access
to reliable severe weather warnings is helpful to start dischargement in a water reservoir. Besides

12 https://github.com/52North/series-rest-api
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Figure 6. Architecture with GeoEvent bus in the EarlyDike project (adapted from [51]).

real time event pattern matching the developed dam monitoring system accesses severe weather
warnings from the Web Feature Service of the Deutscher Wetterdienst (German Meteorological Office).
Predefined filters (location, topic) extract those weather warnings that are of interest for the monitored
structures.

Figure 7. Architecture of the TaMIS project.

4.2.2. Lessons Learned

During the EarlyDike project, missing solutions for emitting spatio-temporal events by low-cost
IoT devices and for filtering these events spatially and temporally were identified. This is essential
for the project’s aims since dikes which protect the hinterland are widespread along the coastline.
Because of this gap, the MQTT protocol was extended to spatio-temporal filtering capabilities (see
Section 2.3.2). However, neither a standard for spatio-temporal data streams nor a domain-specific
language for event-driven pattern matching (e.g. as described in Section 3.1) do exist. Additionally,
the integration of spatio-temporal data streams in traditional GIS Software is lacking. Coupling
standardized spatio-temporal data streams in GIS software has high potential to improve spatial
analysis and allows for real-time operations.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 August 2018                   doi:10.20944/preprints201808.0132.v1

http://dx.doi.org/10.20944/preprints201808.0132.v1


18 of 26

One gap within the TaMIS eventing application is the implicit linkage among eventing rules and
observation streams (time series). The eventing rules in TaMIS observe threshold overshoots and
undershoots of time series. A robust linkage within the web service layer among an eventing rule and
a time series is crucial for the eventing logic to work robustly. However, this linkage is currently solved
merely implicit at the web service layer and has to be configured explicitly in a client application. In
the future this explicitness have to be transferred to the web service layer.

4.3. Disaster Response and Urban Sensing

The proliferation of heterogeneous urban sensors and volunteered geographic data (e.g. from
crowd-sourcing) provides novel data-driven methods for emergency response and early detection
of hazardous events. Challenging are the combination of these massive real-time data streams from
urban sensors and the common reasoning on these heterogeneous data formats. As an example, a
traffic loop detector provides a different spatio-temporal granularity than a video camera or a twitter
post, but all data sources may contain useful insights on one particular congestion or flooding event in
a smart city.

The European FP7 project INSIGHT [53] focussed on the intelligent synthesis and real-time
response using heterogeneous data streams. Goal was to gain situation-awareness and perform crisis
response based on heterogeneous sensor data streams. Thus, several event detection tasks were
addressed by the consortium and a special architecture for spatio-temporal event detection has been
proposed.

4.3.1. Architectural Approach

The proposed architecture we introduced in the INSIGHT project13 [54] has been inspired by the
TechniBall system [55] and follows the Lambda architecture design principles for Big Data systems
[56]. A sketch of the architecture and the interconnection among the components is presented in
Figure 8, a comparison to other event processing frameworks can be found in [5]. Every data stream is
analysed individually for anomalies. In this detection functions (e.g. clustering, prediction, thresholds,
etc.) on the data streams can be applied. The resulting anomalies are joined at a round table. A final
Complex Event Processing component allows the formulation of complex regular expressions on the
function values derived from heterogeneous data streams. The predictions comprise future predictions
of sensor values [57], but also regression at unobserved locations [58].

In the succeeding VaVeL project14 the architecture of the INSIGHT project is reused and the
application focuses on urban sensor data streams which are combined to gain situation-awareness.
One of the project goals is to provide a multi-modal trip planner for the citizen that incorporates
predictions and extracted events to avoid delays. Thus, the tram delays are predicted [60], and these
predictions are incorporated in the OpenTripPlanner framework15 to provide route suggestions that
avoid delays.

4.3.2. Lessons Learned

Utilizing real-time values and predictions for situation awareness faces some problems which are
listed in the following.

• Utilization: Using these real-time predictions in a routing framework causes performance issues,
we thus improved the applicability of existing transfer pattern algorithms towards dynamic costs
[61].

13 http://www.insight-ict.eu
14 http://vavel-project.eu
15 http://www.opentripplanner.org
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Figure 8. INSIGHT Architecture for event detection from heterogeneous data streams exemplified with
two input streams Twitter and traffic loop data derived by SCATS, compare [54,59].

• Proactive control: If any person would follow our route recommendations, we would cause
novel unexpected traffic congestions at unexpected places. Indeed, utilizing a prediction for a
control decision modifies the distribution of the observed data and makes the prediction model
invalid. A common approach towards this problem is bandit feedback learning. In [62] we apply
on of its algorithms, reinforcement learning, to the problem of traffic control and street network
performance was improved.

• Life-long systems: A real-time system has to cope with a changing environment. In route
planning, e.g., one may not rely on the availability of a certain pathway. Thus, we tackle this
problem by a distributed online mapping method [63] to identify obstacles and free spaces in
real-time.

4.4. Spatio-Temporal Modelling

Often, geospatial applications rely on the execution of spatio-temporal models in order to
determine or predict the distribution of specific properties. One example for such an application
is the calculation of pollutants within the public sewage system in case of heavy rainfall events, as it
is performed by the COLABIS project (https://colabis.de). Another example is the WaCoDiS project
(https://wacodis.fbg-hsbo.de) which aims at the identification of element input in water courses and
dams based on the combination of in-situ and remote sensing data.

Although both of these projects deal with different thematic questions, they share a common
requirement: The execution of models and analysis algorithms in order to detect certain properties, as
soon as updated input data is available. In case of the COLABIS project, this concerns the availability
of radar-based rainfall data: based on the updated radar data, the latest rainfall data can be used for
updated flood model runs that predict the distribution of pollutants in the sewage system. In case of
the WaCoDiS project, the corresponding data analysis algorithms shall be executed as soon as new
remote sensing data is available that fulfils certain quality requirements (e.g. no cloud coverage, etc.).

Thus, both projects would benefit from an automated trigger as soon as new suitable data is
available so that new processing workflows can be initiated.

4.4.1. Architectural Approach

Both of the above mentioned projects are still work in progress. Within the COLABIS project,
currently a time-based trigger is used. As the time interval in which radar updates are available is
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approximately known, this information can be used for triggering the workflow execution in regular
intervals. However, for further optimization in case of irregular availability of data, the COLABIS
workflow would benefit from an event-based approach as it is currently developed in the WaCoDiS
project.

Figure 9. Simplified Overview of the WaCoDiS Workflow Architecture.

Within the WaCoDiS project the workflow partially outlined in Figure 9 is followed. In this case,
it is necessary to start a process chain as soon as new remote sensing images are available. For this
purpose, all incoming data such as Sensor Web observations or metadata about Copernicus satellite
images is stored in a central repository. A task manager holds several subscriptions on this repository,
so that it is notified as soon as new data is available, which matches the conditions defined for the
subscriptions. As soon as all necessary data for a workflow run is available, a workflow controller
reacts on the information about new available data and triggers the execution of the corresponding
data analysis processes on OGC Web Processing Service instances.

This publish/subscribe architecture enables automatic process/model execution as soon as the
conditions for a new run are fulfilled. As a result, this approach ensures the timely delivery of new
information as soon as updated input data is available. Currently, different approaches for enabling
the publish/subscribe patterns within the WaCoDiS infrastructure are investigated. Besides the OGC
PubSub standard [21] also mainstream IT technologies are evaluated.

4.4.2. Lessons Learned

Currently the presented workflow is still in development so that evaluation results are not yet
available. However, in the near future the presented workflow will be further refined and it is expected
that follow-up publications will present a detailed analysis of this concept. It is expected that especially
the WaCoDiS developments will make a contribution to enabling event-driven data flows in spatial
data infrastructures, as outlined in Section 3.3.

5. Discussion and Conclusions

The presented application domains and related projects (Section 4) cover current research activities
of the authors. The illustrated architectural approaches could be translated to other relevant domains
where real-time spatio-temporal data also play an important role. Currently, new research activities are
focussing on fields such as logistics, precision farming or Earth Observation that can build upon the
outlined solutions. At the same time, the landscape that we outlined in 2 illustrates the high diversity
of approaches in the field of Eventing in geo-information science. Recent research activities have also
highlighted the challenge of event processing capabilities in the area of geospatial IoT architectures (see
[64]). This diversity and the related challenges in combination with the availability of sophisticated
software solutions for stream processing evolve into a challenging research area. This is especially
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relevant in the context of IoT technologies, networks, and devices which promise to contribute an
additional source of real-time data to spatial data infrastructures.

Following the analysis of systems which have been developed in various application domains we
identified several existing gaps. The commonly occurring issues that need to be tackled in the coming
years in order to take full advantage of the uptake of eventing in GI Science are outlined below.

• Inconsistencies between classic data access methods and event-driven approaches: The implementation of
forms of asynchronous client-server interaction is considered highly relevant to most geospatial
application scenarios. Nonetheless, the analysis of existing SDIs shows that the majority of
spatio-temporal data is provided either in a static way or via standardized Web services. Still, these
Web services rely on the request/reply pattern. Also the current OGC standard baseline is still
mainly based on synchronous web service capabilities, which have insofar primarily addressed
the request/reply model. Thus, while waiting for an event, a client must repeatedly request
the desired information (polling). This has undesirable side effects: if a client polls frequently
this can increase server load and network traffic, and if a client polls infrequently it may not
receive a message when it is needed. These issues are accentuated when event occurrences are
unpredictable, or when the delay between event occurrence and client notification must be small.
The establishment of the publish/subscribe pattern could eradicate these shortcomings. It could
be argued that a growing number of applications may benefit from an interoperable and uniform
way of implementing event-driven architectures. Possibly, the transition to an Event-driven SOA
could see a parallel transition to an Event-driven SDI, backed by some or all of the presented
standards and solutions.

• Heterogeneous approaches for defining event patterns: While the OGC PubSub standard aims at
providing a common approach how to enable push-based communication patterns within SDIs, it
does not address how the events shall be described that data consumers are interested in. Even
though there were previous efforts to address this topic (e.g. the OGC Event Pattern Markup
Language Discussion Paper [65]), the way of defining event patterns is still mostly depending
on the used technologies. However, to ensure full interoperability, also the harmonization of
approaches for defining event patterns is necessary. This would also comprise extensions of
the OGC PubSub standard. An interesting field of work would be the addition of event stream
processing capabilities [65]. Stream processing goes beyond the capability of basic data filtering. It
generates higher level information from raw data stream (e.g. event patterns such as “temperature
< 20 followed by temperature >= 20”). This would allow the integration of concepts such as
Complex Event Processing into the standard and could be realized as a dedicated event processing
extension of the OGC PubSub standard.

• Standardization and corresponding support in established GIS software. At the moment the integration
of event-based communication flows in established GIS software is still a gap. Even though there
are dedicated components such as Esri’s GeoEvent Server the integration into typical desktop GIS
is still missing as it would require new concepts how to handle such information flows within
the existing graphical user interfaces. At the same time new lightweight, standardized solutions
(e.g. based on REST and JSON) would be needed to allow the development of sophisticated client
solutions. However, the availability of such lightweight interoperability standards is still a gap
which needs to be resolved (potentially through faster, lightweight standardisation approaches). In
this context, the definition of additional interface bindings and profiles for OGC PubSub delivery
methods is an important task. In order to allow smooth and interoperable integration of OGC
compliant Publish/Subscribe services, such profiles are crucial. The integration of modern and
well-established technologies such as AMQP, MQTT and JMS with specific profiles is therefore a
central goal.

• Bidirectional integration of IoT devices in event-driven SDI: Until now, SDIs are mainly dealing
with data but not with the devices delivering this data. However, the direct integration of IoT
devices (e.g. resource-constrained platforms, sensors, actuators, moving objects) would create
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new opportunities. On the one hand this would open up a new dimension in SDIs by having IoT
devices as direct sensors delivering live input about their environment. On the other hand, the
bi-directional integration of IoT devices would also make it possible to define and execute specific
sensing tasks or to even interact with the environment.

• Lack of semantic interoperability of geospatial events: At the moment, the semantics of events occurring
an event-enabled SDI are not yet harmonised from a semantic point of view. For the future it
would be important to have common semantics for events (e.g. new IoT device registered in
an SDI, threshold exceedance of detected values) to achieve full interoperability. At least for a
common foundation of typical events, a dedicated vocabulary or ontology would be desirable.

In summary, it can be concluded that the integration of IoT devices and the enablement of
event-based communication patterns would be a valuable enhancement of SDIs. While first relevant
results are already available, there is still a broad range of challenges which need to be addressed
before achieving the goal of Event-Driven Spatial Data Infrastructures.
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Abbreviations

The following abbreviations are used in this manuscript:

ADS-B Automatic Dependent Surveillance - Broadcast
AMQP Advanced Message Queuing Protocol
ATC Air Traffic Control
CEP Complex Event Processing
CoAP Constrained Application Protocol
CSW Catalogue Service for the Web
DSP Distributed Stream Processing
EDA Event-Driven Architecture
EML Event Pattern Markup Language
EPL Event Processing Language
GIS Geographic Information System
GIScience Geographic Information Science
INSPIRE Infrastructure for Spatial Information in Europe
IoT Internet of Things
JMS Java Message Service
JSON JavaScript Object Notation
MEP Message Exchange Pattern
MQTT Message Queuing Telemetry Transport
OGC Open Geospatial Consortium
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PubSub OGC Publish/Subscribe Interface Standard
REST REpresentational State Transfer
SAS Sensor Alert Service
SDI Spatial Data Infrastructure
SES Sensor Eventing Service
SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
SOS Sensor Observation Service
SPS Sensor Planning Service
SSDI Sensor and Spatial Data Infrastructure
SWE Sensor Web Enablement
SWES SWE Service Model
WEPS Web Event Processing Service
WNS Web Notification Service
WPS Web Processing Service
XML eXtensible Markup Language
XMPP Extensible Messaging and Presence Protocol
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