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ABSTRACT
We consider a city where induction-based vehicle count sen-
sors are installed at some, but not all street junctions. Each
sensor regularly outputs a count and a saturation value. We
first use a discrete time Gauss-Markov model based on his-
torical data to predict the evolution of these saturation val-
ues, and then a Gaussian Process derived from the street
graph to extend these predictions to all junctions. We con-
struct this model based on real data collected in Dublin city.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Markov processes, mul-
tivariate statistics, stochastic processes, time series analysis;
I.2.6 [Artificial Intelligence]: Learning—parameter learn-
ing ; J.7 [Computer in Other Systems]: Real time

Keywords
traffic prediction, Gaussian Process, Gauss-Markov, autore-
gressive, smart cities, time series, spatio-temporal

1. INTRODUCTION
In the Greater Dublin Area, 750 (4%) junctions are cov-

ered by one or several SCATS (Sydney Co-ordinated Adap-
tive Traffic System) vehicle count sensors. Our goal is to
provide estimates of the saturation at each junction, for the
current and future times, whereas our previous work [1] only
did so for each junction at the current time.

High traffic saturation (cars/km) co-occurs with low traf-
fic flux (cars/hour) and is an indicator for congestions [3].
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Figure 1: Future measurements are estimated by
a Gauss-Markov process (Section 2). Estimates for
junctions without sensors, are provided by a Gaus-
sian Process (Section 3).

Our work can be used for online signaling and trip planning.
The urban street network is a graph (V,E), where the

vertices V are the junctions and the edges E the street seg-
ments. Let u be the set of unobserved junctions, with no
SCATS sensor, and −u = V \u the junctions with sensors.
The saturation of a junction vi at a time t is a continuous
random variable yi,t. Furthermore, yu,t ≡ {yi,t}i:vi∈u.

We combine two components to obtain an estimate of the
saturation of all junctions at future time steps, yV,t+∆t , con-
ditioned on the current observations, y−u,t (∆t ∈ N0).

The first one, P (y−u,t+∆t |y−u,t), models historical mea-
surements. It can estimate future measurements ŷ−u,t+∆t ,
based on the current observations ŷ−u,t:

ŷ−u,t+∆t = E(y−u,t+∆t |ŷ−u,t) . (1)

The second is a Gaussian Process (GP) based on the street
network and defining a multivariate Gaussian distribution
P (yV,t) over the saturations at all junctions. Conditioning
this distribution on y−u provides P (yu,t+∆t |y−u,t+∆t) and
allows to estimate saturations at junctions without sensors:

P (yu,t+∆t |y−u,t) ≈ P (yu,t+∆t |ŷ−u,t+∆t) . (2)

Figure 1 illustrates the resulting prediction procedure.
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2. GAUSS-MARKOV
A linear dynamical system models the evolution of a set

of state variables y ∈ Rp, where we omit the subscript −u:

yt+1 = Atyt + wt (3)

wt ∼ N (w̄t,Σwt) . (4)

x1 ∼ N (ȳ0,Σ0), a multivariate Gaussian distribution of
mean ȳ0 and covariance matrix Σ0. The Kalman filter can
compute P (yt+∆t |yt) = N (ŷt+∆t , Σ̂t+∆t) recursively.

Sensor measurements were collected from 2013-01-01 to
2013-05-141 by 512 (470 non trivial ones) vehicle count sen-
sors located in central Dublin. We average all measurements
received on non-overlapping 4 minutes intervals, because of
missing values, and model the resulting averages from 5am
to 12am. The parameters At, w̄t, Σwt change for every time
step but are identical for every day. So are ȳ0 and Σ0.

Following the methodology of [6], each matrixAt is learned
using (averaged) measurements for t′ ∈ {t − δt, . . . , t + δt},
weighted by a Gaussian kernel: exp(−(t− t′)2/δt). We arbi-
trarily use δt = 3. For each matrix At, each row ri,t is esti-
mated using an elastic net [7] and ten-fold cross-validation.
Σ0 and each Σwt are diagonal covariance matrices estimated
by maximum likelihood. Alternatively, penalized estimation
algorithms such as the graphical lasso [2] could be used.

3. GAUSSIAN PROCESS
P (yu,t+∆t |y−u,t+∆t) is derived from a GP regression frame-

work modeling traffic saturation values of all junctions at a
given time, similar to [5]. Multiple sensors at a junction are
averaged. For each vertex vi, we introduce a latent variable
fi, the true traffic saturation at vi:

yi = fi + εi (5)

εi ∼ N (0, σ2) . (6)

We assume that the random vector of all latent variables
follows a GP: any finite set f = {fi}i=1,...,M has a multivari-
ate Gaussian distribution. Therefore, the vector of observed
traffic saturations (y−u) and unobserved traffic saturations
(du) follows a Gaussian distribution[

y−u

du

]
∼ N

(
0,

[
K−u,−u + σ2I K−u,u

Ku,−u Ku,u

])
, (7)

where I is an identity matrix, K the so-called kernel and
Ku,−u, K−u,−u, Ku,u, and K−u,u the corresponding entries
of K. Conditioning on y produces P (yu,t+∆t |y−u,t+∆t).

We use the common regularized Laplacian kernel function

K =
[
β(L+ I/α2)

]−1
, (8)

where α and β are hyperparameters. L denotes the combi-
natorial Laplacian, L = D − G. G denotes the adjacency
matrix of the graph G and D a diagonal matrix with entries
di,i =

∑
j Gi,j . Variables adjacent in G are highly correlated.

4. DISCUSSION
We have described a combination of two models able to

respectively predict future traffic saturations at junctions
with sensors and to extend these predictions to junctions
without sensors, in a city. To the best of our knowledge, no
similar model has been proposed before.

1http://dublinked.ie/datastore/datasets/dataset-305.php

A similar approach was proposed to provide dynamic cost
predictions for a trip planner in the same workshop [4]. In-
stead of a linear dynamical system (LDS), a spatio-temporal
Markov random field (STMRF) is used. It models discretized
saturation values only, and inference is approximated by be-
lief propagation whereas it is computationally tractable and
performed exactly in LDS. Our model also has a finer tem-
poral resolution. Therefore, it can be used for signaling or
online adaptation of the route in addition to offline trip plan-
ning. Comparing these two models in terms of precision and
speed would be interesting.

The Gauss Markov model assumes the dynamics are lin-
ear, first-order Markov and perturbed by Gaussian noise.
More refined models could be considered and might lead to
better estimations.In particular, we could assume the mea-
surements are noisy observations of a hidden process.

Other information could also be leveraged. For example,
the street network could be used to derive a prior on the co-
efficient of the transition matrix, influencing the model only.
Irregular, pointwise traffic estimation (for example based on
mobile phones or GPS) could be integrated into the Gaus-
sian Process to produce finer saturation estimates. Finally,
different dynamics could be estimated and used in the pres-
ence or the absence of rain, modifying both the model and
the estimation process.
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