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Abstract—We present a novel approach for event recognition
in massive streams of heterogeneous data driven by privacy
policies and big data event processing. New technologies
in mobile computing combined with sensing infrastructures
distributed in a city or country are generating massive, poly-
structured spatio-temporal data. With a view on emergencies
and disasters these various data sources enable early response
and offer situative insights when integrated in an on-line
incident recognition system.

Our hereby presented system architecture integrates multi-
faceted sensing and distributed event detection to identify,
label and increase confidence in detected incidents. A higher
flexibility than existing event detection approaches is achieved
by combination of the data streams at a round table. At the
round table the data flow adjusts itself during execution of
the real-time detection system. This offers more robustness in
case streams appear or disappear. The developed architecture
is used in nation-wide and city-level incident recognition
scenarios.

Keywords-massive heterogeneous data streams, event detec-
tion, real-time big data analytics

I. INTRODUCTION

The increasing availability of massive heterogeneous
streaming data for public organizations, governments and
companies pushes their inclusion in incident recognition
systems. Leveraging insights from these data streams offers
a more detailed and real-time picture of traffic, communica-
tion, or social networks, to name a few, which still is a key
challenge for early response and disaster management.

Recent disasters in Germany (floods, hurricanes etc.) and
recurring critical states in the Dublin transport system show
the relevance of an incident recognition system that makes
use of the increasing number of available data sources.
Involving civil service agencies such as the German Federal
Office for Civil Protection (BBK) and Dublin City Council
(DCC) poses additional requirements in terms of complexity
of the event space as well as data security and privacy.

Our main goal is to design a distributed, privacy-
preserving incident recognition system that is capable to
scale with the number of data sources, to integrate various
data characteristics and to detect incidents by fusing infor-
mation derived from various data streams, handle uncertainty
in the data, and label relevant events as enriched incidents.

These data sources comprise mobile network utilization
data, social media streams (twitter), data on bus and train
networks (see [1] for details). We also integrate expert feed-
back (crowdsourcing) for event labeling. Initial experiments
on the first two data sources show that fusing different
streams constructs a richer picture of reality [2], e.g. geo-
referenced micro-postings (Twitter) and cellular mobile net-
work utilization during the centennial flood in Germany.

Automated fusion of heterogeneous data streams is chal-
lenging due to the different data formats and spatio-temporal
resolutions. Harmonization and preprocessing is required.
Also, the sensor streams potentially observe different aspects
of the same phenomenon. The granularity and latency of
the data streams vary with the different capabilities and
locations of the sensors. Thus one event happening at a fixed
location and time is measured at various places and times.
It is important to match the heterogeneous streams in order
to profit from the multi-faceted evidence.

The paper at-hand tailors our approach for heterogeneous
data streams processing for incident detection and alarming.
Our approach consists of three steps reflected in three main
system components: (1) event detection performed by the
Intelligent Sensor Agents (ISA components); (2) a Round
Table (RT component) projects anomalies to an ontology of
low level disaster events (incidents) by fusing and evaluating
the derived multi-source information on a detected anomaly;
and (3) complex event processing component for pattern
matching and situation reconstruction. At the end recognized
incidents are used for visualization and alarming to inform
experts located at DCC or BBK.

The paper is structured as follows. The next section
presents related work and necessary features of an event
detection system. Section III describes our architecture,
Section IV an example of its operation and Section V the
implementation in a streams framework. Sections VI and
VII detail two components. Finally, we provide a summary
and discuss future steps.

II. RELATED WORK

Our approach for real-time analysis of massive heteroge-
neous streaming data is inspired by the TechniBall system
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[3], previous works on stream data analysis [2] and follows
the Lambda architecture design principles for Big Data sys-
tems [4]. The data streams processed in this paper represent
spatial time series. Based on these spatial time series, low-
level events may be derived.

In general spatio-temporal data comes in a variety of
forms and representations, depending on the domain, the ob-
served phenomenon, and the observation method. In princi-
ple, there are three types of spatio-temporal data: spatial time
series, events, and trajectories. A spatial time series consists
of tuples (attribute,object,time,location). An event of
a particular type event; is triggered from a spatial time
series under certain conditions and contains the tuples veri-
fying these conditions (event;, object,, time,,locationy,).
A trajectory is a spatial time series for a particular object,;.
It contains the location per time and is a series of tuples
(object;, time,, location,,).

Detecting events in spatio-temporal data is a widely
investigated research area (see [5] for an overview). Previous
work on spatial events detection [6] already extend the
detection by a dynamic tracking of event clusters through
space and time. In general functions for event detection can
be classified using a former concept of raster-geography,
namely map-algebra [7]. Both, raster geography and hetero-
geneous spatio-temporal data analysis consider data which is
provided in multiple layers (i.e. one layer per data stream).
Functions can be applied to one or multiple layers. Thus,
spatial functions split into four groups: local, focal, zonal
and global ones [7]. For heterogeneous data streams analy-
sis, expressiveness of these four function types is important
to derive low-level events (incidents), and for combining
(e.g. aggregation, clustering, prediction etc.) low-level events
to trigger high-level events (situations).

The exploitation of spatio-temporal event patterns is a
major research field in mobility mining. Recently, pattern-
graphs were introduced in [8], their pattern description is
capable to express the temporal relations among various
occurring events following the interval-calculus [9]. As an
example the co-occurrence of two low-level events may trig-
ger any high-level event. We extend their notion with spatial
relations based on the region connection calculus [10] for
detection of spatio-temporal patterns as part of the complex
event processing component on situation reconstruction.

The complex event processing component can potentially
be defined independently of the input streams. Possible
frameworks are the event calculus [11], finite automaton
[12] and other pattern matcher [13], [8] or even complex
frameworks which allow application of local, focal, zonal
and global functions e.g. [14], [3]. The requirements for
spatio-temporal pattern matcher in our setting are:

 to operate in real time,

¢ to incorporate spatial [10] and temporal [9] relations

« to provide local, focal, zonal, and global [7] predicates

on the attributes, and

e to pose arbitrary queries formed of these elements
(regular language [15], Kleene closure [16]).

The recent challenge of the ACM conference on Dis-
tributed Event-Based Systems 2013 addressed some of these
aspects by posing an event detection task in trajectories of
soccer match players. The high sampling rate of the data
pushed development of new data processing frameworks.
Our approach uses this innovation, in particular the Tech-
niBall solution [3] and its underlying streams framework
[17]. The streams framework executes a predefined dataflow
graph (defined in XML). The dataflow graph consists of
descriptions of incoming streams and programmable pro-
cessors which modify, filter and process the data streams.
This generic scheme allows easy combination with (1)
existing streaming query languages e.g. ESPER [18] or
finite automaton for regular expression matching and (2)
functions (aggregations, predictions, etc.). Limitations of the
TechniBall system are:

e The TechniBall framework for event detection uses ho-
mogeneous data streams, in contrast this work utilizes
heterogeneous data sources.

o The union of the different streams is expert-designed,
fixed and non-flexible.

Others approaches focus on trajectories and project the
derived mobility behavior into geographic semantic spaces
[19] which is a similar concept to the abstraction done in
a Round Table. However, this remains a semi-automated
process.

To build an adaptable heterogeneous data streams aggre-
gation system, information extracted from each data stream
must be coded into a common language. This language is
defined by an ontology, which is nothing new. For example,
[20] also proposed an heterogeneous sensor aggregation
platform using an ontology to query measurements. One key
difference with our work is that we do not only describe
a mechanism to query measurements or to communicate
with sensors, but also a generic framework to fuse ex-
tracted information in order to detect relevant events. In
other words, using existing frameworks typically requires
the development of both an aggregation mechanism and
of sensor specific processing algorithms, while ours only
requires the latter. On the other hand, it is restricted to event
detection while other frameworks can be used for other tasks.

III. ANALYSIS WORKFLOW FOR HANDLING MASSIVE
HETEROGENEOUS STREAMING DATA

The components of the proposed system architecture are
organized into four layers. The sensor streams are captured
by the input layer, and then are passed to the specific
Intelligent Sensor Agent (ISA) for cleaning, formatting, and
event detection. The basic event data then enter the Round
Table (RT) using a common abstraction model of the data
in order to fuse information from various data sources.
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Figure 1: Steps in situation reconstruction

The outcome are incidents which are fed into the complex
event detection (CEP) component, which is responsible for
aggregating, clustering, simulation or prediction on these
incidents. The fusion of information within the Round Table
and CEP takes place in the computation layer. The final
results are disseminated to all interested parties via the
output layer.

The Round Table and the Intelligent Sensor Agents are
the two main components of the architecture developed in
the INSIGHT project!.

1) Events and incidents: For the sake of clarity Figure 1
illustrates a typical three-step knowledge chain of a situation
reconstruction process. At the lowest level, we detect basic
events in each individual data stream. Any redundancies or
contradictions must, naturally, be resolved. If a RT is able to
confirm and label the event using an ontology (add semantics
to it) and assess its relevance, it becomes an incident.

Each incident is characterized by

« alocation, the area affected by the incident, for example
a polygon delimited by geographic coordinates;

o a time interval (potentially of length zero) when the
event occurred;

« an event type, also called event semantics or labels, a
classification of an event, for example flood, traffic jam
or explosion.

Each incident is part of a situation; for our city-level
and nation-wide use cases it may be a congestion, accident
or more complex disaster situation. By grouping related
incidents and ordering them correctly, separate situations can
be identified. To support the relevance assessment and to put
events into context all currently active situations must be
known at the incident detection level. Detecting events and
incidents are the central tasks of the RTs. Figure 2 outlines
the general process flow.

ISA-level
: 1 [ 1T 1
Intern§| event Instantiation B ek situation
detection and of one round P a 5
. determination revaluation reconstruction
processing table

Figure 2: General process of sensor intelligence
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2) Intelligent Sensor Agent: The ISA is a sensor-based
stream processing unit integrated with a dedicated analytics
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and learning engine accompanied by a local history. Each
ISA may be viewed as embodying an autonomous Lambda
architecture, wherein the stream processor corresponds to
the speed layer, the local history represents the batch layer,
and the indexed knowledge computed from the history
parallels the serving layer. For more details, see [21].

An ISA is adapted to a given group or class of input
sensors and knows about sensor characteristics and embodies
specific functions for data processing, cleansing, filtering and
handling of missing values. Each ISA is also responsible for
detecting events, that are indications of potential incidents.

In practice, this means that each ISA, or group thereof,
is responsible for detecting known, suspicious, aberrant or
interesting readings at the source. If such sensor readings
are observed the detecting ISA suggests that the Round
Table Manager (RTM) initiates a so-called Round Table.
Additionally, the ISA responds to queries from an already
instantiated RT by integrating the most recent streaming data
with its local store of historical knowledge (batch views).

Examples for low-level events that could be discovered
in the ISA are: increasing numbers of Twitter messages, the
reduction of density among moving objects, the mentioning
of critical events in micro-postings or the decrease of traffic
saturation.

The ISA may be deployed either locally or remotely,
relative to the rest of the INSIGHT system:

« Locally on the same cluster as the RT and CEP compo-
nents of the INSIGHT back-end. This naturally relies
upon the data supplier’s willingness to allow off-site
access to their raw data, even over a secure connection.

+ Remotely at the physical location (e.g. base station)
from which the sensors are administered. If, for in-
stance, the sensors provide highly sensitive data with
high privacy constraints, it may be forbidden to access
the data from an off-site location. Other data sources
may not be allowed to be stored at the same location
(e.g. billing and service data). Local ISAs share only
abstract event descriptions with the INSIGHT back-end.

By adopting this design, we both delegate the initial
detection of relevant or interesting events to the sensor level,
and we decentralize the system’s data, storing and processing
it locally at the point where it is most needed and best
understood. With this unique concept we achieve multiple
benefits:

« sensor-specific, data-centric intelligence

« legal constraints satisfaction for each data source

« decentralization of data (e.g. for privacy reasons)

« individual storage strategies

« overall flexibility of the final system (e.g. extensibility).

The term “sensor” may in turn refer to an actual sensor,
or a higher-level generalization from which our input data
is drawn. For instance, we may not have direct access
to every phone in a cellular network, but may receive



cellular-sensitive network data instead. Due to the composite
functionality of the ISA, it straddles the input, preprocessing
and computation layers of the system architecture.

3) Round Table: Monitoring real world sensor data in a
distributed and loosely coupled manner to detect relevant
events requires joint analysis of various sources of data.
With our approach to delegate the processing and local event
detection to specialized ISA, we need a system to exchange
information between these agents to come to a joint decision
on events.

The RT is responsible for identifying, confirming and
labeling events by fusing information from different ISAs,
from crowdsourcing and/or from human experts. It is a
multi-agent collaboration environment to validate, enrich
and confirm events to become incidents in our terminology.

A RT is instantiated by the RTM whenever an basic
event reported by an ISA must be investigated. The RT then
monitors the situation by involving other ISAs to share their
current state of information and to come to an agreement on
whether an incident has happened or not and in the positive
case associate a specific time interval, location and semantics
to this incident.

The RT session may be envisioned as a “round table meet-
ing of experts,” where each expert has its own view on reality
and knowledge. The main idea is that for each event detected
by a single ISA we need to consult additional sources for
complementary information and refinement of the current
findings until we reach an agreement on whether or whether
not a relevant incident has been detected. The process may
include input from human analysts. As “Expert-in-the-loop”
they guide algorithmic methods over all iteration steps (e.g.
by labeling data or provide ground truth).

In general, objectives of a RT session are:

« achieving a higher spatial and/or temporal resolution,

« assigning a label to the event,

« increasing the confidence in the validity of the event,

o annotating a confirmed event with additional semantic

information.

To achieve these goals we need to investigate any given
event in a flow of events. For each anomaly one instance
of the RT is initiated by the detecting agent. The structure
of a RT is shown in Figure 3. Part of each RT is the
moderator, the initiating ISA and invited participating. After
initiation the RTM chooses and recruits a selection of other
ISA (experts), which it believes may, together, be able to
confirm an event or not.

To initiate the discussion, the requesting agent has to
provide initial information to the group. This information
may contain a time, location and type of event.

If the joint information provided by all agents is insuf-
ficient to decide on an event, the RT has three options for
resolving the deadlock:

1) employ the system’s crowdsourcing capabilities to so-

licit information from external actors, such as citizens

who may be present in the vicinity of the event,
2) escalate the issue to a human expert, who is asked to
manually identify and resolve the deadlock in the RT,
3) close the discussion without result.

The strategy selected very much depends on the use case
and nature of the event at hand. Disasters with a nation-
wide magnitude may require the involvement of official
actors whereas in a traffic scenario soliciting information
from citizens may be constructive.

The general course of the RT process can be described

by:

1) an ISA detects an anomaly;

2) the ISA requests the RTM to set up a RT session
instance;

3) the RT selects data sources it believes are promising to
evaluate the anomaly, the data sources are represented
by their ISAs;

4) the initiator of the RT presents its finding to the RT;

5) the RT requests information from other participating
agents;

6) all other participants explore their sensor data to
verify an occurrence of an event showing the same
characteristics as provided; this is an iterative process;

7) the RT receives and integrates information provided
by each ISA;

8) if an event has been detected the most precise descrip-
tion of the anomaly is distilled from all data “on the
table”;

9) the RT sends information on the decision to the
complex event processing.

This procedure is illustrated in Section IV and the RT
inner workings are described in Section VL.

4) Ontology: Each ISA receives data items encoded using
a stream specific format. At the RT level, information
extracted from these data streams by each ISA are combined.
The RT must therefore be able to understand these pieces
of information.

To achieve this understanding, there are two possibilities:
adapting the RT for every new type of ISA, or developing
a common language and interface between the ISA and
the RT. The first approach would contradict the modularity
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Figure 3: Structure and components of a Round Table



requirement of the INSIGHT system. We therefore select
the other possibility. The ontology is the common language
used by the RT, the RTM and the ISAs.

Each ISA therefore also acts as an interface, as a trans-
lator, between the raw data and higher level components of
the system. The ISA encodes information extracted from the
raw data into a language the rest of the INSIGHT system
can understand. The words of this language are defined by
the ontology.

Informally speaking, an ontology is a description of data.
It describes the structure of the data, values allowed within
the various elements of the structure, and a representation
of the relationships between the allowed values. Such an
ontology can be used in

e communication between systems, e.g. through web

services, and

e communication within a system, e.g. in communica-

tion between stream processors in a stream processing
framework, and possibly

« reasoning about the data, e.g. event detection, reconcil-

ing the output of multiple event detection engines.

The ontology developed for the INSIGHT system is
subject for future improvements, including the definition
of what are the time, location and semantics, relevant for
the communication between the ISAs and the RT, and the
reasoning.

5) Round Table Manager: The creation of the RT can
be triggered by two elements. First, a RT can be created
following an external query from a human expert (pull-
based) or second, an ISA detects an abnormality which
triggers the RT instantiation (push-based).

An event affecting a large area could result in events
detected by multiple ISAs at distinct locations, potentially
leading to the creation of multiple RTs. These RTs would
then process the same event. These duplicates could be
removed by the complex event processing constructing
incidents, and some duplicates are probably unavoidable.
However, processing the same event multiple times would
consume resources without necessity, and should be avoided
or mitigated.

To handle this type of issues, an overview of all existing
RTs is necessary. This overview is taken care of by the RTM,
which is responsible of the creation and the management of
the RTs. The RTM is described in more details in Section
VIIL.

IV. OPERATION ILLUSTRATION

To give an illustrative example of the RT process, assume
that a mobile phone network sensor detects an abnormal
reading at Cell AB — 1234, starting at 12:00 and not yet
returned back to normal at 13:20. The sensor agent re-
sponsible for the mobile network sensor forwards this event
to the RTM. The manager creates a RT session and adds
the initiating agent (mobile phone network) and the agents

semantics
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incident not an incident
disaster not a disaster
natural’/ \accident sport game fair
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Figure 4: Illustration of an event label ontology

responsible for the Twitter sensor to the list of participants.
The initiator of the meeting shares the information on the
anomaly with the RT. This information may be a 3-Tuple

< location, time, {< semantic, likelihood >} >,

where the notation {...} denotes a list of elements. Each
element of this tuple is encoded according to the ontology.
For this example, we choose a concrete representation of the
form:

< (lat,long, radius), [starttime, endtime)],
{eventType, likelihood} > .

Let us also assume that eventType is an element of the

ontology represented in Figure 4. This ontology contains

catastrophic events such as “flood” or “car accident” and

some other non catastrophic events such as “football game”.
The requesting ISA could therefore report :

< (6.51,9.87,1500), [12 : 00, 13 : 20[, {< incident,1 >,
< not_incident, 0.2 >} > .

Based on this triple, the RT asks all participating ISAs to
gather information about this incident, for example infor-
mation about the same location, starting at 12:00. Since the
event is not over yet, the RT does not specify an end time
to this query, and the ISAs keep gathering and providing
information to the RT.

The Twitter sensor agent receives the query and searches
for relevant Tweets around the requested location. In this
example it finds a large increase in the frequency of the
hash tag “FC Koln” since 12:00. Therefore, it derives that
with high probability the eventType is a soccer game.

This new information is now reported to the RT:

< (6,9,10000), [12 : 00, now], {< soccer_game, 1 >,
< handball, 0.2 >, < disaster,0.1 >,
< not_incident, 0.2 >} > .

As there are only two sensor agents in the session, the RT
can merge the two messages. For the semantics, a merge
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Figure 5: Illustration of an collection of information in the
Round Table. The phone ISA first reports an anomaly in the
location represented by the green circle (5a). The Twitter
ISA searches for an event and identify a high number of
football related tweets in the much larger dashed black circle
(5b). To check whether the area affected is larger than the
original area (green), the RT queries the phone agent for
nearby locations, resulting in the phone agent providing
information about the light red locations (5c¢).

could for example result in the following combination:

{< soccer_game,1 >, < handball,0.2 >,
< disaster,0.1 >,
< not_incident, 0.04 >},

and therefore to a more precise event label. The time is
identical, so the merge is trivial. However, the locations do
not match, as the Twitter ISA has a much coarser resolution
than the phone ISA. According to the Twitter ISA, the area
affected by the event could therefore be much larger than
previously thought.

To resolve this uncertainty, the RT could in a second step
query the phone ISA about cells next to the original cell
(6.51,9.87,1500). This is illustrated in Figure 5. When the
RT receives additional information about the extended area
from the phone ISA, it can decide to extend the area of the
original event, or not.

When a sufficient confidence is reached by the RT, the
RTM outputs the result for further processing and/or display
to human operators.

The RT monitors the incident until it ends, providing
updates about the affected locations and signaling its ter-
mination.

V. IMPLEMENTATION OF THE SYSTEM

This section focusses on the implementation of the IN-
SIGHT system. In Section V-A, we describe the relation-
ships between the different components of the RT. Finally
Section V-B considers the implementation of the system in
a streaming framework.

Different frameworks and hardware can be used to build
such a system (see e.g. [21]). The focus of this section is not
on discussing these technologies, but rather on implementing
the system using such technologies.

A. Interface description

Communication between elements of the system is cen-
tered around two types of messages, the queries generated
by the RT and the computations of the ISA. This includes
both the original events detected independently of any RT
query and the answers computed because of opened queries.

This section first describes the instantaneous relationships
between the ISA, the RT and the data they exchange. Java
interfaces allowing to create and manage these relationships
are provided publicly to facilitate usage of the hereby
presented system.

An ISA is characterized by its ID and its description.
An ISA can be assigned to RTs by the RTM. Each RT is
characterized by an ID. A RT sends a spatio-temporal query
to each ISA, that is a location and a start time. This query
is currently the same for all ISAs, but this can be modified
easily.

The result of the computations of the ISA is formatted
as a Round Table Data (RTData). A Round Table Data is
composed of the following elements:

e RTDatalD, a unique identifier,

o timeStamp, the time the RTData was generated,

o timelnterval, the time interval the RTData applies to,

o location, the area the round data applies to,

« the likelihood of different eventTypes for this particular

location and time interval.
Both the ID and the time stamps compose the key of a
RTData. This allows an agent to update a previous RTData.

RTData are communicated by the ISA to the RTs. There
are two possible relationships between and agent, a RT and
a RTData. The RTData either was at the origin of the RT or
was communicated to the RT based on a query to the agent.

In a distributed system, the delays between the generation
of RTData and their reception by the RT / RTM may be
significant. To monitor the system, the time stamp of the
reception of a RTData must be recorded.

B. Implementation in a streaming framework

The INSIGHT system deals with massive amounts of data.
Moreover, ISAs can be physically located in a different
location than the main INSIGHT architecture. The INSIGHT
system is therefore designed with a streaming architecture
in mind. This section considers the implementation of the
RT using the TUD streams framework [17]. Adapting the
content of this section to another streaming framework is
straightforward.

The streams framework is based on four abstract elements:

e containers are environments where stream sources,

services and processes exist and are executed,

o streams or queues provide access to a sequence of data

items,

e processes are active elements that read from a stream

and execute a set of processors for each item obtained
from the stream,
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Figure 6: The Round Table (RT) and Round Table Manager
(RTM) are implemented in the TUD streams framework as
the same processor, here represented with the communica-
tion channels between the RTM / RTs container and the ISA
containers.

o services are essentially simple sets of functions that are
exported to be accessible from anywhere at anytime.

The interplay between these elements is illustrated in [17].

Since ISAs operate independently from each other and
possibly in different locations and therefore on different
machines, ISAs are likely to run in different containers.
However, different ISAs can also be implemented inside
a common container, for example if they operate on data
collected at the same location.

RTs and the RTM are closely related, since the latter
creates and monitors instances of the former. Therefore
they operate in the same container. Several organizations
are possible within that container. We placed the RTs and
the RTM in the same processor (Figure 6, right). Using the
same processor facilitates the communication (no need to
use services), but is harder to modify in case using several
machines becomes necessary at a later stage. See [22] for
alternatives.

Setting up the communications between the ISAs and the
RT using TUD streams involves two decisions: encoding the
messages (anomalies, queries and answers) exchanged by
the different entities and transmitting them. Since the content
of the messages is described by the ontology, formatting
the messages reduces to selecting a data-interchange format.
We use JSON. We transmit anomalies and answers using
the same channel. Both are emitted by the ISA and mostly
consist of a RTData item. The only difference is the receiver:
the RTM or the RT. They can easily use the same channel
if, for example, anomalies are identified by the fact their RT
ID is null. The second decision is whether a stream or a
service is used for each channel. We expect a high volumes
of all three message types. We therefore implement them all
as streams, as illustrated in Figure 6.

VI. ROUND TABLE FORMALIZATION

A RT receives many information from the ISAs, and must
evaluate the occurrence of an incident. In this section, we
formalize the task of the RT as an inference problem and
propose a solution. Figure 7 illustrates the formalization.

Let a random variable Z be the label of an unknown
interesting incident. Admissible values of Z are the nodes
of a tree structure, defined by an ontology (see Figure 4 for
an example).

incident

different ISAs

OO @Dy,

Figure 7: Schematic representation of the Round Table
problem formulation. An event (of label Z) can affect a
set of locations L. Each variable A}, indicates whether
location [ is affected at time ¢. Different heterogeneous
sensor networks Y; = {Vi 1.+, Vi 24, ...} monitor the state
of the locations over time. Grayed nodes are observed
measurements, white ones are unobserved variables. Each
inner rectangle represents one ISA processing one sensor
stream Y;, outer rectangles different time steps. Arrows
between X and ) represent the geometric relationship
between the sensor specific location and the incident specific
location. For example, a Twitter ISA might have a coarser
geographical resolution than physical sensor ISAs.

The area being monitored (for example, Dublin or Ger-
many) is prepartitioned into a set of locations L. For any
given time ¢ and a specific location [ € L the random binary
variable A} ; indicates whether [ is affect by an event at time
t. X = {X;}ier denotes the set of all elements indexed
by time ¢ during monitoring time 7" and X; = {X];}iecr.
P(X|Z) encodes the spatio-temporal characteristics of each
event. For example, a flooding incident is likely to affect a
larger area while a football match is more localized.

Each heterogeneous data stream Y; is processed by an
ISA and interpreted as a set of random variables {yz,j,t},
and each variable ); ;; regroups the measurements related
to one or several locations, denoted by Py, . ,.

Furthermore, we assume that the locations associated
to sensor measurements inside a specific stream are non-
overlapping. In other words Py, ;,, NPy, , = 0 v5#74.
The idea behind the ISA is that it understands the nature
of the sensor network and is capable of not only detecting
potential events (anomalies) but also to prepare the data
so that it is consumable by the RT. In particular, it can
enforce the non-overlapping location assumption, although
we believe it is not very strong. Indeed, physical sensors are
typically associated to well-defined geographic locations, for
example the location of the sensor, the position of the public
transport vehicle equipped with GPS or the area serviced
by a mobile phone cell tower. Geo-localized measurements
such as tweets can either be handled individually as point
wise measurements, or handled as a group of measurements
based on proximity, leading to the definition of cells.

The goal of the RT is to infer the values of the variables
Z U X, based on the measurements {Y;};. To perform this
inference, the RT has access to the following elements, made
available by each activated ISA: P(Y; ;¢|Z, Py, ,,)-
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Figure 8: A bounding box is constructed around an anomaly
to maximize the likelihood that the area inside the box is
affected by an event. Boxes too small are discarded as noise.

1) objective function: Two objective functions can be
considered. The first one is the maximum likelihood (ML)
explanation of the observations y, that is

{2} =argmax P(Y =y|lZ=2zX=z), (1)
ze

under some constraints on the configurations of the variables
X to ensure realistic instantiation. These constraints could
for example forbid the consideration of a set of affected
locations that are not connected for a single anomaly.

The second is the maximum a posteriori (MAP) estimate
of the unknown variables, that is

{zMap; Zpapt = argnzlixP(Z =zX=z|Y=y) .
2

However, MAP requires the joint probability of the different
events and of the area affected, P(Z = z;X = x). In
the context of disaster monitoring, this quantity is typically
not available, hence why we consider maximum likelihood
inference and not MAP. In other contexts, the RT can easily
be updated to perform MAP inference using approximate
inference algorithms (see for example [23]).

2) ML inference: The complexity of this algorithm de-
pends on the constraints on the variables X. Exploring all
possibilities and associated tradeoffs are outside the scope
of this paper. We describe a simple optimization scheme.

As our constraint, we restrict the shape of the spatio-
temporal affected area to a rectangular bounding box. This
is illustrated in Figure 8. Any variable X; ; ; whose area is
inside (or intersects) the box takes the value ‘affected by the
incident’, any other variable is ‘not affected by the incident’.

Additionally, we want any solution Z;& to contain the
anomaly. In other words, the variable(s) X'; ; associated to
the location of the initial anomaly must be affected by the
event. We therefore initialize the inference algorithm by only
considering this area and time is affected by the event. We
also initialize the eventType using the likelihood provided
with the original anomaly.

We then use a greedy approach to gradually increase
this area and refine the eventType based on additional
information provided by the ISA. More specifically, we use
alternating optimization to iteratively refine the location,

time and eventType associated to the incident until we reach
a local optimum of the function P(Y = y|Z = z; X = x).

For a given eventType, the current bounding box is
compared to candidate boxes in terms of their likelihood.
Candidate boxes are generated by moving one side of the
current box perpendicularly to itself in order to include or
exclude a single RTData.

Within a given spatio-temporal box, inferring a label is
easy. Let us first assume that all ISAs provide the likelihood
for the same set of eventTypes. Given our assumption that
observations provided by different ISAs and/or about differ-
ent cells and/or different times are independent, likelihoods
are multiplicative:

Py, y|Z=2X=z)=Py|lZ=2X==x)
PW|Z=2zX=2x) .

Computing a likelihood for all eventTypes is therefore trivial.
Let us now assume that RTData items a and b provide likeli-
hoods for different sets of eventTypes S, and S;,. EventTypes
in S° = S,\S, are attributed the same likelihood as their
respective parents, and vice versa. This make any EventType
in S® as likely as its siblings and parent and therefore does
not provide any new information. However, this allows to
combine the two RTData items.

This algorithm has the advantage to be highly scalable. It
also naturally directs the acquisition of information from
the ISAs. To deal with the unbounded network size, we
collect information in a spatial bounding box around the area
initially investigated, from the initial time of the anomaly
until the current time or the end of the incident. The spatial
limit of this network are initialized slightly larger than the
area where the anomaly is detected. These limit are increased
when the estimation of the area affected reaches these limits.

VII. ROUND TABLE MANAGER DETAILS

The RTM has two primary tasks: dealing with basic events
and monitoring RTs.

Anomalies detected by any ISA are handled by the RTM.
It can (a) send the anomaly to an existing RT, so that the RT
includes it in its current investigation, (b) instantiate a new
RT to study the anomaly, (c) ignore the anomaly. Option (a)
is triggered if the anomaly is close to the area investigated by
the RT. There are many possible quantizations of ‘closeness’.
We propose to use a specified percentage of the area being
investigated. Option (c) is only considered if too many
events are already investigated for the computing resources
available. In that case, the RTM prioritizes the investigation
of measurements with the highest likelihood of an event.
When a RT is created, the RTM add ISAs to this RT. At the
moment, we include all available ISAs.

As mentioned before, the RTM also merges RTs that
investigate similar events. An large event can generate
anomalies at distinct locations, potentially leading to the
creation of multiple RTs. To avoid duplicates, the RTM



merge RTs investigating similar locations, that is RTs whose
bounding box spatial locations A and B are such that
area(AUB) < a area(AN B), where « is a user specified
parameter.

The RTM is also responsible for monitoring instances
of RTs so that the system keeps detecting events in real-
time, that is, so that RTs do not require more computing
resources than available. When the computing load reaches
the acceptable limit, the RTM must reduce it. Several options
are available: (a) reduce the history of RTs or (b) stop
some RTs. Reducing the history consists in closing a RT
and creating a new one that will operates only on RTData
about measurements more recent than a user specified time
interval, say 15 minutes. In other words, the new RT will
monitor the situation starting 15 minutes ago. Limiting the
lifespan of RTs can also be used to generate shorter events
in time, in case this is preferred for the operation of the
complex event monitoring engine. Killing existing RTs is a
more drastic measure: some anomalies won’t be investigated
completely. This is a trade-off between monitoring ongoing
events and investigating new ones. As for new anomaly
investigation, we suggest prioritizing anomalies associated
to the highest likelihood of an event.

VIII. SUMMARY AND DISCUSSION

We presented a system for incident recognition from
massive heterogeneous spatio-temporal data streams and
provided an example for its operation. In each Intelligent
Sensor Agent the data from all sensors of a specific type is
preprocessed and low level events (anomalies) are derived.
Our approach poses no assumptions on the location for this
preprocessing. It could be in-situ at the sensor level or on a
centralized computing node. The functions in this analysis
phase may be local, focal and global ones. This could
be signal processing functions (filters, discretization and
thresholds) but also projections, classification, prediction,
clustering and their combinations. Examples for low-level
events (anomalies) that are discovered in the intelligent
sensor agent are: the increase of the number of twitter
messages, the reduction of density among moving objects,
the stagnation of a water level sensor or the decrease of
traffic flux (vehicles per time) or traffic speed at some
location. In case of sparsely observed phenomenon, the
intelligent sensor may impute missing data values. The ISA
is also able to answer queries about specific location and
time interval. This capability is used by the next component
to obtain information about neighboring locations and/or
time steps, or about events detected by another ISA.

A Round Table is instantiated whenever an anomaly is
detected by an ISA. The Task of the RT is to map the
anomaly to an event ontology and to refine its location
and time interval. The heterogeneous data from multiple
ISAs, obtained by querying them, is used for evaluation and
interference of the eventType and reduction of uncertainty.

The RT connects heterogeneous data sources by joining their
ISAs. Some of them have to be invited and are included
on request, e.g., human expert feedback (crowdsourcing).
Others require adjustment of their parameters, e.g., the focus
of a twitter sensor.

These two components fuse information from the input
data streams into a single streams of incidents, defined by the
ontology, and therefore not depending on the format of the
original heterogeneous inputs of the system. Then, a typical
Complex Event Processing component, not discussed in
this paper, processes the single stream of detected incidents
and combines them to high level situations which are of
interest for the end user.

IX. FUTURE WORK

We will use the hereby presented INSIGHT system and
develop ISAs for the available data sources. The incorpo-
ration of forecasting models as well as improvement of the
ontology are also important paths to follow.

The RTM can also be enhanced. In particular, the RTM
can learn from past incidents and learn which ISAs should
be called to a RT to investigate a particular event.
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