
Dynamic map update of non-static facility
logistics environment with a multi-robot system

Nayabrasul Shaik1, Thomas Liebig1, Christopher Kirsch2, and Heinrich Müller1

1 TU Dortmund University, Dortmund, Germany
{nayabrasul.shaik, thomas.liebig, heinrich.mueller}@tu-dortmund.de
2 Fraunhofer Institute for Material Flow and Logistics, Dortmund, Germany

Christopher.Kirsch@iml.fraunhofer.de

Abstract. Autonomous robots need to perceive and represent their
environments and act accordingly. Using simultaneous localization and
mapping (SLAM) methods, robots can build maps of the environment
which are efficient for localization and path planning as long as the
environment remains unchanged. However, facility logistics environments
are not static because pallets and other obstacles are stored temporarily.
This paper proposes a novel solution for updating maps of changing
environments (i.e. environments with low-dynamic or semi-static objects)
in real-time with multiple robots. Each robot is equipped with a laser
range sensor and runs localization to estimate its position. Each robot
senses the change in the environment with respect to a current map,
initially built with a SLAM method, and constructs a temporary map
which will be merged into the current map using localization information
and line features of the map. This procedure enables the creation of
long-term mapping robot systems for facility logistics.

1 Introduction

For autonomous navigation, robots need a representation of the operating environ-
ment. Maps of static environments can be built using simultaneous localization
and mapping (SLAM) methods. Maps built with SLAM work well for localization
and path panning as long as the environment remains static [9]. But most of the
environments are not static due to changes during day-to-day operations. These
changes can be due to high-dynamic objects or low-dynamic objects. Objects
whose location change can be observed in the robot’s field of view, e.g. humans or
other moving vehicles are high-dynamic objects. Objects like pallets and station-
ary vehicles, which are stationary in the robot’s field of view, are low-dynamic
objects [26,31]. Low-dynamic objects are also termed semi-static objects [25].
Considering changes in the environment due to the low-dynamic objects can
improve the localization capabilities of the robot system [25] and improve path
planning of large robot teams [17] as well as the coordination of a multi-robot sys-
tem. If the up-to-date map could be combined with a coordination algorithm (e.g.
Multi-Agent-System), fixed routes could be changed and optimized for changes
in the environment. A very crucial part is the reduction of “reactive behaviours”.



If the robots of the multi-robot system can share the information about dynamic
or semi-static objects, the efforts of obstacle avoidance could be reduced. This
could save costs and time in logistic environments because the robots can always
drive the faster path which is coordinated with all robots and planned according
to the latest environment information. Hence coordinated path planning with
updated environment informtion could reduce waiting time and guarantees the
achievement of transports [22,23].

The mapping of dynamic obstacles is therefore a major step towards life-long
robot navigation. The scope of this work is (1) to detect the low-dynamic objects
and (2) to update the representation of the environment in long-term operation
of multi-robot system.

The following terminology is used throughout the paper:

– Static Map: Map built initially by a standard SLAM algorithm. It contains
static features of the environment like walls and fixed machinery which never
changes. Its line features will be used by the approach for alignment.

– Temporary Map: Maps built by each robot upon detecting changes.
– Current Map: Map updated so far by merging temporary maps. With each

sensor update every robot checks for changes in the environment in comparison
to the current map. Initially, the current map is the same as the static map.

The paper is organized as follows. In the next section related work is pre-
sented. The succeeding section describes the approach and explains the method
for calculating divergence and line-based map merging. Real-world results are
presented in Section 5 followed by conclusions and future work.

2 Related Work

In case of building a static map of an unknown environment with a single robot
system, many SLAM methods are described in literature. Most of those methods
are based on the Extended Kalman Filter (EKF) [12] and the Rao-Blackwellised
particle filter [27]. Cooperative Simultaneous Localization and Mapping (C-
SLAM) methods are used in case of multi-robot systems [13]. Particle filters are
also extended to handle multi-robot SLAM [14].

Handling changes in the environment for life-long navigation of robots is
currently a major research topic [4]. Meyer-Delius et al. [25] used temporary
maps for localisation in a semi-static environment. Their approach maintains
temporary maps in a KD-tree and uses the corresponding map when observations
are not consistent with the static map. Temporary maps are created when the
fraction of range measurements in the current observation, which is not consistent
with the current map (called outlier ratio), exceeds a predefined threshold, and
when no existing temporary map explains the current observations. Temporary
maps are discarded when the average outlier ratio is high. Jensen et al. [15]
employed the shape information of objects and visibility criteria to update changes
in a semi-static environment. Both [25] and [15] are for the case of a single robot
system. In [10], each robot maintains a global map and senses changes in the



environment based on divergence of short term and long term likelihoods. Upon
detecting a change, a temporary map is built. Temporary maps are merged into
the global map using rigid transformation. The calculation of the transformation
bases on the Hough spectrum [11]. The resulting map is dispatched to the other
robots, and each robot updates its map based on this information. Kleiner et
al. [17] used occupancy grid maps with Hidden Markov Models (HMM) to detect
changes with a large team of robots in real-time to compute an optimal road
map.

Various direct and indirect map merging algorithms [20] find transformations
between maps (that are built by individual robots) using relative positions, and
common areas. Carpin et al. [11] find the transformation between maps based
on Hough transform, X-spectrum and Y-spectrum. Lakaemper et al. [19] used
shape similarity to merge maps with polygonal curves.

Many autonomous guided vehicle systems are present for intra-logistics in
warehouses for material flow and order fulfilment. Kiva systems use the mobile
robot drivepod shown in Figure 1(a) [3] which uses cameras for navigation to read
bar codes placed on the floor. The KARIS system, shown in Figure 1(b) [30], uses
grid map based Monte Carlo localization for autonomous navigation. Grenzebach’s
G-Pro vehicles, see Figure 1(c) [1], use induction loops in the floor for navigation.
Fraunhofer IML’s Cellular Transport System [16] replaces conveyor systems by
a swarm of Cellular Transport Vehicles, shown in Figure 1(d), with transport
capabilities for material handling.

(a) Kiva System (b) Karis System

(c) Granzbach G-Pro AGV (d) Cellular Transport Vehicle

Fig. 1: Robots in warehouse logistics



3 Approach

In the approach proposed in this paper each robot detects changes in the envi-
ronment and builds a temporary map. The temporary maps are merged into the
current map. An initial map of the environment is built with a standard SLAM
algorithm which contains only static parts of the environment (i.e walls and fixed
installations). This map will be called static map in the following.

Each robot is equipped with a laser range sensor and runs the localization to
estimate its position. Sensor observations and the estimated position are used
to detect changes in the environment with respect to the given current map (at
first, the initial current map equals the static map). Upon detecting a change in
the environment, the robot can start and stop building a temporary map which
will be merged into the current map. Figure 2 shows an outline of the approach.
In this context a robot can either be in free state in which it did not detect any
change, or a robot can be in building temporary map state in which the robot
detected a change and is building a temporary map. Afterwards, merging of the
temporary map and the current map is done using line features from the static
parts of the environment. The updated current map will be used for further
detection of changes.

3.1 Assumptions

The approach makes the following assumptions for reliable map merging:

– The localization uncertainty is not very high. Otherwise matching of corre-
sponding lines will be difficult.

– The environment has enough line features. This is mostly common in indoor
environments.

– Enough static line features of the environment are present in a temporary
map. If a temporary map contains entirely new information, it will not be
possible to do line matching.

The three main blocks of the approach, Detecting/sensing change, Building
temporary maps, Map merging, are described in the following subsections.

3.2 Detecting/Sensing Change

Detecting/sensing change in the environment is done using weighted recency
averaging of the likelihood and utilizes the method of [9]. The main idea is to
find the divergence of short-term and long-term measurement likelihood for a
given tuple of an estimated pose xt, a laser scan Zt and a map m:

Wavg(t) = p(zt|xt,m), (1)

Wslow(t+ 1) = Wslow(t) + αslow ∗ (Wavg(t)− wslow(t)), (2)

Wfast(t+ 1) = Wfast(t) + αfast ∗ (Wavg(t)−Wfast(t)), (3)

d(t) = max(0, 1− Wfast(t)

Wslow(t)
). (4)
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Fig. 2: Outline of the approach

– If d(t) > 0 start building a temporary map.

– If d(t) ≤ 0 stop building the temporary map and merge it with the current
map.

αslow, αfast are decay parameters such that 0 ≤ αslow << αfast and equation (1)
represents a laser sensor model based on beam range finder model [29] to find
the probability p of the observation Zt being at the location xt given the map
m. Figure 3 shows the evolution of the divergence d(t), αslow, αfast, αavg for a
period of about five minutes navigation through a changing environment. Besides
changes in the environment also a rotation of the robot can cause a change in the
divergence which may trigger the creation of a temporary map even if there is
no change in the environment. This is mitigated by not updating the divergence
during rotation of the robot which can be seen in the plot as constant values.

3.3 Building Temporary Maps

Temporary maps were built using the Hector SLAM [2] package available in Robot
Operating System (ROS) [7]. Hector SLAM builds the occupancy grid based on
scan matching by aligning the end points of current laser scan beams with the
map learned so far using a Gauss-Newton approach. A multi-resolution map
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Fig. 3: Evaluation of divergence, wavg(t), wfast(t), wslow(t)

representation is used to address the problem of local minima [18]. Examples of
temporary maps can be seen in Figure 4(b) and Figure 5(c).

3.4 Fusion / Merging Temporary Map

The goal of the merging process is to align and merge the temporary maps with the
current map. In this step an obstacle which is temporarily mapped will be added to
the map or subtracted by its removal. To align the maps, localization information
and line features are used. Initially, the temporary map is transformed into a
static map coordinate system, utilizing the first robot location from which the
construction of the temporary map started. Depending on the localization method,
the accuracy of the estimated position varies. The effect of an uncertainty in the
localization position can be seen in Figure 4(c). Ideally, if the estimated position,
obtained by localization, is accurate, the temporary map should align with the
current map perfectly. To adjust misalignments of these maps, occurring due to
the uncertainty in estimated position, line features from the static environment
are used. The correcting transformation T{dx, dy, dθ} is calculated sequentially,
i.e. initially a correction in angle dθ is found. Afterwards, the vertical displacement
dy and the horizontal displacement dx are calculated [28].

Line segments from the static map and the temporary map are extracted using
the Hough transform [6]. Due to the width of the edges and noise in the sensor
readings the same edge can provide various lines. This set of line segments is
preprocessed so that each edge is represented by a single line segment. Extracted
lines can be seen in Figure 4(c), green and red line segments correspond to
static and temporary maps, respectively. Afterwards, matching line segments in
pairs are determined. Each line segment is represented by Hesse Normal Form
which contains the normal distance from the origin r and the angle between the
normal and the horizontal axis θ. A pair of lines is defined by the normal distance



(a) Static Map of the environment (b) Temporary map

(c) Overlay Temporary Map with localization (d) Correction in angle

(e) Vertical Correction (d) Horizontal Correction

Fig. 4: Exemplification of the proposed map merging steps using line segments.

(rm − rn) and angular difference (θm − θn). For a given pair of line segments
in the temporary map {ltm, ltn}, all the matching pairs of line segments in the
static map are found. All the lines in the static map are candidates for matching
line segments. For both segments in the temporary pair, a normal is drawn from
the mid point. In turn, the nearest line segment from the candidate line segments
of the matched static pair is found. The nearest lines are matching lines if the
nearest line segment pair is matched with temporary pair.

Correction in angle dθ is the mean value of the angle differences between the
matched line segments weighted by the length of the temporary line. The vertical
displacement dy is the normal distance between the matching line segments after
rotating temporary line segments with correction angle dθ.

Before calculating the horizontal displacement dx, the temporary map is
transformed with the previously calculated correction in angle dθ, see Figure 4(d),
and the vertical displacement dy (Figure 4(e)). The horizontal displacement
is calculated by finding maximum matching horizontal displacement i.e. the
displacement which corresponds to the maximum matching of grid cells in the
static map and transformed temporary map.



4 Implementation

The approach has been implemented on Cellular Transport System (CTS) vehicles
(Figure 1(d)) [16]. Each vehicle is equipped with a Sick safety laser sensor and
runs landmark-based Monte Carlo localization to estimate its position. The server
runs Ubuntu 14.04 with ROS Indigo. Each vehicle sends its estimated position
(xt) and the corresponding laser reading (Zt) to the server through ZeroMQ [8].
On the server the divergence is calculated and temporary maps are built. Merging
of the temporary maps with the static map is done on server.

5 Experiments and Results

The approach has been tested in the LivingLab for Cellular Transport Systems at
the Fraunhofer Institute for Material Flow and Logistics [5]. The dimension of the
testing area is about 60 m× 18 m. Initially a complete map of the environment
with static parts is built using Hector SLAM which can be seen in Figure 5(a).
This static map contains walls, picking stations (seen as ellipses) and other fixed
installations (one on the right and another one far to the left). Later, two pallets
were placed in the environment and few other stationary robots were also present
along the horizontal wall at the bottom during the experiment. A test robot was
made to navigate along the path shown in Figure 5(b) at speed of 0.5 m/s which
takes about 5 minutes. In this experiment, the robot detected changes at four
locations and corresponding maps were built.

One of the temporary maps is shown in Figure 5(c). The temporary maps
are transformed and merged into the current map. Figure 5(d) shows correction
of temporary map overlaid onto current map. The two pallets were successfully
detected and updated in the map after merging the temporary maps, cf. Fig-
ure 5(e). In addition, added stationary robots can be seen along the horizontal
wall at the bottom.

Next, the performance of map matching has been investigated in detail. Two
cases are distinguished: (1) addition of obstacles and (2) removal. The robot
speed is equal in both cases. For each case three temporary maps are presented
and the edge-wise matching errors are highlighted. The resulting maps for case
one (addition of obstacle) are shown in Figure 7.



(a) Static Map (b) Path of robot during experiment

(c) Exemplified Temporary Map (d) Overlaying Temporary Map

(e) Final map after Merging

Fig. 5: Results of map updating

(a) Temporary Map1 (b) Matching of Temporary Map1

(c) Temporary Map2 (d) Matching of Temporary Map2

(c) Temporary Map3 (d) Matching of Temporary Map3

Fig. 6: Evaluation of line matching for temporary maps in case of obstacle addition.
Lines from both the static and the temporary map are numbered and shown in green,
and red, respectively. Additionally lines from the temporary map after using corrected
transformation are shown in blue. Best viewed in color.



Table 1: Performance of edge-wise matching in case of obstacle addition.

Temporary Map temporary line
ID

global line ID distance differ-
ence in px

angle difference
in degrees

Map1 0 2 0.707107 0
Map1 1 12 0.707107 0
Map1 2 9 0.707107 0
Map1 3 2 0.689639 −1.20035
Map1 4 0 1.6094 2.24936

Map2 0 2 2.54951 0
Map2 2 2 0.695382 −0.925865
Map2 3 12 0.707107 0
Map2 4 9 0.707107 1.20035
Map2 5 2 1.58114 0

Map3 0 8 2.54951 0
Map3 1 4 0.695382 0
Map3 2 8 0.707107 0
Map3 3 5 0.707107 0
Map3 6 17 1.58114 3.08052
Map3 8 11 0.707107 0.605741
Map3 9 2 1.58114 0



Table 2: Performance of edge-wise matching in case of obstacle removal.

Temporary Map temporary line
ID

global line ID distance differ-
ence in px

angle difference
in degrees

Map1 0 2 0.707107 0
Map1 1 22 1.58114 0
Map1 2 2 1.58378 −0.605741
Map1 3 12 1.58114 0
Map1 4 9 0.707107 0
Map1 5 22 1.58114 0

Map2 0 0 0.707107 0
Map2 1 0 0.707107 0
Map2 2 0 0.707107 0
Map2 3 0 0.707107 0
Map2 4 0 1.57597 1.21538
Map2 5 0 0.707107 −1.83647
Map2 7 0 0.707107 2.24936
Map2 8 4 0.707107 0
Map2 9 11 1.4301 −1.25872
Map2 11 0 1.58114 0
Map2 14 0 1.58114 0
Map2 17 0 0.707107 0

Map3 1 2 0.707107 0
Map3 2 8 0.707107 0
Map3 3 0 1.63474 4.13334
Map3 4 4 0.707107 0
Map3 5 8 0.707107 0
Map3 6 0 0.695467 −1.03391
Map3 7 2 52.5024 0
Map3 9 22 1.59199 −1.93029
Map3 11 2 0.707107 2.81821
Map3 12 8 1.58114 0
Map3 13 5 1.59479 −2.3415

Results from the two datasets above show that the approach has produced
consistent occupancy grid maps which represent the map changes. Also from the
evaluation calculations, the distance difference between matched lines in almost
all the cases was less than 1 or 2 pixels. This error can occur due to the noise
from the laser measurements or due to the approximation of lines from Hough
transformation. Also the angle difference between matched lines was zero in most
cases and maximum difference obtained was less than 5 degrees.

6 Conclusion and Future Work

We proposed a method for updating the environment map for long term operation
of a multi-robot system. Therefore, we utilized line features to merge grid maps.
Our experiments demonstrate practicability of the approach. The method can



(a) Temporary Map1 (b) Matching of Temporary Map1

(c) Temporary Map2 (d) Matching of Temporary Map2

(c) Temporary Map3 (d) Matching of Temporary Map3

Fig. 7: Evaluation of line matching for temporary maps in case of obstacle removal.
Lines from both static and temporary map are numbered and shown in green, and red,
respectively. Additionally lines from temporary map after using corrected transformation
are shown in blue. Best viewed in color.

be applied easily in a multi-robot environment. Next steps will be, besides
improvement of the approach, to perform qualitative evaluations in more complex
and realistic scenarios for longer durations. The mapping of dynamic obstacles is a
major step towards life-long navigation. In future, related path planning, collision
avoidance and congestion avoidance problems will also be studied. The fusion
with stationary sensors (e.g. Bluetooth [21,24]) directs to autonomous vehicle
problems, where Car/to/Infrastructure communication is an active reserach topic.
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