
On Event Detection from Spatial Time series for
Urban Traffic Applications

Gustavo Souto1 and Thomas Liebig2

1 Fraunhofer Institute for Software and Systems Engineering, Fraunhofer ISST
Gustavo.Souto@isst.fraunhofer.de

2 TU Dortmund University, Artificial Intelligence Group
thomas.liebig@tu-dortmund.de

Abstract. Since the last decades the availability and granularity of
location-based data has been rapidly growing. Besides the proliferation
of smartphones and location- based social networks, also crowdsourcing
and voluntary geographic data led to highly granular mobility data, maps
and street networks. In result, location-aware, smart environments are
created. The trend for personal self-optimization and monitoring named
by the term ’quantified self’ will speed-up this ongoing process. The cit-
izens in conjunction with their surrounding smart infrastructure turn
into ’living sensors’ that monitor all aspects of urban living (traffic load,
noise, energy consumption, safety and many others). The “Big Data”-
based intelligent environments and smart cities require algorithms that
process these massive amounts of spatio-temporal data. This article pro-
vides a survey on event processing in spatio-temporal data streams with
a special focus on urban traffic.

1 Introduction

Early detection of anomalies in spatio-temporal data streams provides many ap-
plications for smart cities and is a major research topic since the availability and
granularity of location-based data has been rapidly growing in the last decades.

Besides, the proliferation of smartphones and location- based social networks,
also crowdsourcing and voluntary geographic data led to highly granular mobility
data, maps and street networks. In result, location-aware, smart environments
are created. The trend for personal self-optimization and monitoring named
by the term ’quantified self’ will speed-up this ongoing process. The citizens in
conjunction with their surrounding smart infrastructure turn into ’living sensors’
that monitor all aspects of urban living (traffic load, noise, energy consumption,
safety and many others).

The “Big Data”-based intelligent environments and smart cities require algo-
rithms that process these massive amounts of spatio-temporal data in real-time.
But key challenges for streaming analysis are (1) one-pass processing (2) limited
amount of memory and (3) limited time to process [6].

Spatio-temporal data comes in a variety of forms and representations, de-
pending on the domain, the observed phenomenon, and the observation method.

liet
Haftnotiz
@incollection{souto15,

Author = {Gustavo Souto and Thomas Liebig},

Booktitle = {Solving Large Scale Learning Tasks: Challenges and Algorithms},

Ee = {http://doi.ieeecomputersociety.org/10.1109/ICDE.2008.4497566},

Pages = {217--230},

Title = {On Event Detection from Spatial Time series for Urban Traffic

Applications},

Year = {2016},

volume = {9580},

editor = {Stefan Michaelis and Nico Piatkowski and Marco Stolpe},

publisher={Springer International Publishing},

}

liet
Maschinengeschriebenen Text
BibTeX:



2

In principle, there are three types of spatio-temporal data streams [19]: spatial
time series, events, and trajectories.

– A spatial time series consists of tuples (attribute, object, time, location).
– An event of a particular type eventi is triggered from a spatial time series

under certain conditions and contains the tuples verifying these conditions
(eventi, objectn, timen, locationn).

– A trajectory is a spatial time series for a particular objecti. It contains the
location per time and is a series of tuples (objecti, timen, locationn).

The increasing availability of massive heterogeneous streaming data for pub-
lic organizations, governments and companies pushes their inclusion in incident
recognition systems. Leveraging insights from these data streams offers a more
detailed and real-time picture of traffic, communication, or social networks, to
name a few, which still is a key challenge for early response and disaster manage-
ment. Detecting events in spatio-temporal data is a widely investigated research
area (see e.g. [1] for an overview). Depending on the application, the event de-
tection can analyze single trajectories (e.g. of persons or vehicles), group move-
ments, spatio-temporal measurements, or heterogeneous data streams. Following
examples highlight capabilities of these approaches:

– Individual Mobility: Within airports (or other security region) it is valuable
to monitor whether individuals enter some restricted area. The analysis of
stops or of sudden decelerations allows detection of unusual behaviour. Se-
quences of such events can be matched against predefined mobility patterns
[12], e.g. to identify commuters.

– Group Movement: During public events the early detection of hazardous
pedestrian densities gains much attention. The patterns one could distinguish
and detect in group movement are encounter, flock or leadership pattern [10].

– Spatio Temporal Measurements: A spatio-temporal value spans a whole re-
gion. This could be traffic flow, air pollution, noise, etc. The sudden rise or
decline of these values indicates an anomaly.

– Heterogeneous Data Streams: The combination of previously described types
of anomalies provides event filters in an urban environment based on hetero-
geneous data (e.g. GPS data of pedestrians, traffic loop data, mobile phone
network data).

In the paper at-hand we provide a introductory survey on (1) functions on
heterogeneous spatio-temporal data streams, Section 2, (2) pattern matching,
Section 3, (3) anomaly detection in spatio-temporal time series, Section 4, and (4)
streaming frameworks, Section 5. All four aspects are relevant for implementing
real-world event detection systems that process heterogeneous data streams.

2 Function Classes on Heterogeneous Spatio-Temporal
Time Series

In general functions for event detection from heterogeneous data streams can be
classified using a former concept of raster-geography, namely map-algebra [5].
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Both, raster geography and heterogeneous spatio-temporal data analysis con-
sider data which is provided in multiple layers (i.e. one layer per data stream).
Functions can be applied to one or multiple layers. Thus, spatial functions split
into four groups: local, focal, zonal and global ones [5], illustrated in Figure 1.

– Local functions operate on every single cell in a layer. And the cell is pro-
cessed without reference to surrounding cells. An example is a map trans-
formation, the multiplication with a constant, or the comparison with a
threshold.

– Focal functions process cell data depending on the values of neighboring cells.
The neighborhood can be defined by arbitrary shapes. Example functions are
moving averages and nearest neighbor methods.

– Zonal functions process cells on the base of zones, these are cells that hold a
common characteristic. Zonal functions allow the combination of heteroge-
neous data streams in various layers by application of functions to one layer
if another layer already fulfills another condition.

– Global functions process the entire data. Examples are distance based oper-
ations.

For heterogeneous data streams analysis, expressiveness of these four function
types is important to derive low-level events (incidents), to combine low-level
events (e.g. aggregation, clustering, prediction etc.) and to trigger high-level
events.

Fig. 1. Function classes on Spatio-Temporal data, Dark blue highlights the currently
processed location. Light blue cells indicate the regions whose values are used for
computation. Best viewed in color.

3 Event Pattern Matching

The exploitation of spatio-temporal event patterns is a major research field in
mobility mining. Event pattern matching focuses on the task to match sequences
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of events against event patterns and to trigger another event (which is raised for
further analysis) in case the sequence matches. Recently, pattern-graphs were
introduced in [27], their pattern description is capable to express the temporal
relations among various occurring events following the interval-calculus [2]. As
an example the co-occurrence of two low-level events may trigger any high-level
event. With spatio-temporal data streams also spatial relations are important
to consider. The region connection calculus [28] lists relations of spatial events
that are essential for a spatio-temporal pattern matcher.

Possible frameworks for event pattern matchers are the event calculus [32],
finite automaton [12] and other pattern matcher [8, 27] or even complex frame-
works which allow application of local, focal, zonal and global functions e.g.
[30, 14]. The requirements for spatio-temporal pattern matcher in a smart city
scenario are:

– to operate in real time,
– to incorporate spatial [28] and temporal [2] relations
– to provide local, focal, zonal, and global [5] predicates on the attributes, and
– to pose arbitrary queries formed of these elements (regular language [23],

Kleene closure [18]).

In Table 1 we compare the features of state-of-the-art event detection frame-
works. The temporal expressiveness is split into the following four categories:

– Pattern Duration is a constraint on the temporal distance of first and last
condition in a pattern.

– Condition Duration is a constraint on the duration of a condition to get
matched.

– Inter-Condition Duration is a constraint on the temporal distance among
succeeding conditions.

– Complete indicates the complete integration of the temporal relations [2].

The Table also compares the approaches from the literature against the IN-
SIGHT architecture, we introduced in [31]. This approach is inspired by the
TechniBall system [14], previous works on stream data analysis [13] and follows
the Lambda architecture design principles for Big Data systems [22]. A sketch of
the architecture and the interconnection among the components is presented in
Figure 2. Every data stream is analysed individually for anomalies. In this detec-
tion functions (e.g. clustering, prediction, thresholds, etc.) on the data streams
can be applied. The resulting anomalies are joined at a round table. A final
Complex Event Processing component allows the formulation of complex regu-
lar expressions on the function values derived from heterogeneous data streams.
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Fig. 2. INSIGHT Architecture for event detection from heterogeneous data streams
exemplified with two input streams Twitter and traffic loop data derived by SCATS,
compare [31, 4].

4 Anomaly Detection on Spatial Time Series

This section discusses state-of-the-art of anomaly detection in traffic condition
data streams as this paper focuses on smart cities and traffic is a major aspect of
a smart city. However, some techniques generalize also to other spatio-temporal
phenomena as noise, pollution, etc. For a comprehensive survey on outlier de-
tection from spatio-temporal data streams we point the reader to [16].

4.1 Statistical Approach

Pang et. al proposed an approach [25] which extends the Likelihood Ratio Test
(LRT) framework to detect abnormal traffic patterns in taxi trajectory data
(GPS trajectories). The approach partitions the road network of Beijing into a
spatial grid, regions (R), to deal better with the problem of finding abnormal pat-
terns. The extended LRT uses statistical models which are Persistent Spatiotem-
poral Model (PSTO) and Emerging Spatiotemporal Outlier Model (ESTO) to
compute the likelihood of ”anomalousness” of a region and detect the emerging
spatio-temporal outliers, respectively. In addition, the proposed statical model
works with the Maximum Likelihood Estimation (MLE) and Upper-bounding
strategy to estimate the parameters of models and prune the non-outliers, respec-
tively. However, this approach does not use other source of data (e.g. weather,
list of events in the city, social network) to reduce the uncertainty of detected
events, as well as it does not present a good ratio of adaptability to face natural
changes in the data stream over time.

In [34], Yang et. al present a non-parametric Bayesian method, or Bayesian
Robust Principal Component Analysis (RPCA) - BRPCA, to detect traffic events
on a road. This method takes the traffic observations as one dimensional data
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and converts it into a matrix format which in turn decomposes it into a superpo-
sition of low-rank, sparse, and noise matrices. In addition, this method proposed
an extended BRPCA to deal with multiple variables/time series/data streams.
The idea of that extended BRPCA is to improve the traffic detection by sharing
a sparsity structure among multiple data streams affected by the same events.
Such an approach uses multiple homogeneous data streams and a static weather
data source in the detection process.

In [26], although the major goal of this work is not detect outlier itself, the
authors propose a novel adaptive Artificial Neural Network (ANN) based filter
to detect and remove them to build a training data. The ANN filter uses the
training set (i.e., usually the 3 months of historical data - information from
street loops) as incoming and thus analyzes whether the readings are twice the
maximum value, if it holds true, then the method marks it as anomaly, otherwise
removed.

In [36], the authors propose an approach to estimate the traffic which uses
mobile probes to detect outliers in Handover Data of a suburban freeway. The ap-
proach detects anomalies in 2 steps. The first step applies Least Squares Support
Vector Machine (LS-SVM) ensemble classifier to identify whether each individ-
ual handover link is an outlier or not, and the second step employs a statistical-
based algorithm which evaluates whether the detected outlier holds any locally
handover link which is anomalous as well.

Trilles et al. [33] propose a variation of the CUmulative SUM (CUSUM) al-
gorithm to detect anomalies in data streams near to real-time. This approach is
only applied when the observations are in-control, that is, the data is normally
distributed. In the anomaly detection process the CUSUM is obtained by com-
puting Si = Si−1 · zi, where zi is a standard normal variable which is computed
as follows zi = xi−x̄

s , where the s is the standard deviation of the time series, and
xi is the i-th data point of the time series. The events are detected by the Equa-
tion 1, if SHi

exceeds a predefined threshold (CUSUM control charts) Â ± hσx
(h = 5 and σx is the standard deviation), then it is an Up-Event due to its
increase and if SLi

is greater than threshold (CUSUM control charts) Â ± hσx
(h = 5 and σx is the standard deviation), then it is an Down-Event due to
its decrease. The variable k is a slack-variable and denotes the reference value
which is usually set to be one half of the mean. The advantages of this work are
the application of a simple approach for Real-Time anomaly detection and the
dashboad application to visualize the detected events. However, the work does
not present experiments with a data source which has high refresh rate such as
SCATS data stream.

SHi = MAX[0, (zi − k) + SHi − 1]

SLi = MIN [0, (zi − k) + SLi − 1]
(1)

4.2 Human/Driver’s Behavior

Pan [24] proposes a new method to detect disruptions in typical traffic patterns
(traffic anomalies) using crowd-sourcing and social media. This approach detects
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anomalies according to drivers’ routing behaviour instead of traffic volume-based
and speed on roads. In addition, it provides a view of congested road segments
and their relationships among these segments. It also provides to the end-user
a detour router to avoid or escape the congestions. This method also makes use
of a historical tweets associated with the spatial region to represent the normal
occurrences of each region. In order to retrieve only the relevant contents, this
approach applies a simple filtering technique which compares the frequency of
current tweets with historical tweets and apply a weight to each term according
to its frequency, as well as the location and time information.

4.3 Unsupervised

Yang [35] investigates the problem of outlier detection on large-scale collective
behaviors. His work extracts features from high-dimensional data streams us-
ing K-Nearest Neighbors (KNN) method to detect the anomalies. This method
performs the anomaly detection in 3 phases as follows: (1) observations from
multiple sensors, this phase organizes more than 400 sensors as high-dimensional
time series; (2) manifold learning, it applies Locally Linear Embedding (LLE)
computes and Principal Component Analysis (PCA) to obtain a feature at a
higher abstraction level; and (3) outlier detection, this phase performs the out-
lier detection through the K-Nearest Neighbors. The approach works good since
special days, or holidays, which might generate an abnormal flow are known
in advance. For instance, New Year and Independence Day. However, from this
characteristics, it indicates that the method cannot handle historical data as well
as adapt itself according to the changes.

Guo et al. [15] propose a traffic flow outlier detection approach which fo-
cuses on the pattern changing detection problem to detect anomalies in traffic
conditional data streams. The traffic data comes from inductive loop sensors of
four regions in United State and United Kingdom as well as this works makes
use of a short-term traffic condition forecasting system to evaluate the proposed
approach. This approach performs the analysis of the incoming data point after
the data point be processed by Integrated Moving Average filter (IMA) which
captures the seasonal effect on the level of traffic conditional series, and then
Kalman filter picks up the local effect flow levels after IMA, and GARCH filter
models and predict time-varying conditional variance of the traffic flow process.
These filters constitute together the integrated forecast system aforementioned.

4.4 Tree Approach

Liu et al. [21] present an approach based on features analysis to detect outliers
points as well as trees which detects the relationship among anomalies in traffic
data stream. This work uses taxi trajectory data (GPS trajectories) on the road
network of Beijing. The approach presents a model with 3 main steps which pro-
cesses the traffic data to build a region graph. The 3 main steps are (1) Building
a region graph, (2) Detect outliers from graph edges, and (3) Discover rela-
tions among outliers (building a tree). Then, this method partitions the map of



9

traffic into regions by employing Connected Components Labeling. Each region
holds a link to other region and a link is anomalous whether its features have
the largest difference from both their temporal and spatial neighbors, and the
STOTree algorithm captures the causal relationship among outliers. Although
this work presents an interesting work about correlated anomalies in traffic data
streams, the work does not provide experiments under an online setting for the
traffic anomaly detection. Instead, it describes a set of algorithms which could
be applied in such a setting.

4.5 Discussion

Although these works present some substantial advances in the field of anomaly
detection in data streams, the field is still in its early stage, and therewith it
is possible to see that such works hold some drawbacks as well as open tasks.
Examples of open tasks are incorporate heterogeneous data streams, keep track-
ing of historical data (local and global), apply adaptive data stream models, use
expert knowledge, develop straightforward and lightweight approaches for data
stream analysis. These open tasks aim to improve the anomaly detection in data
streams (in general), that is, decreasing the uncertainty whether the detected
event is a true anomaly.

The use of heterogeneous data streams improves detection of anomalies by
reducing the uncertainty about the events veracity, this issue has been little
exploited in the traffic conditions domain. Outlier detectors should take into
account external factors (e.g., weather and social events), such an issue has been
exploited more than heterogeneous data streams, but their applications only
refer to sources which provide static information, or general information from
online forecast sources (e.g., wind speed, amount of rainfall, humidity), instead
of precise information about what is happening around the city by using local
sensors (e.g., flood in a specific region of a city). The works [31] and [4] use
heterogeneous data streams to detect anomalies in a smart city, but it is still
some open questions which need answers such as ”How to merge the flow of
heterogeneous data streams to obtain a good result?” and ”How to join the result
of the analysis of each flow to detect the true anomaly detection?”.

Adaptive classification models react to the natural changes of data stream.
The change of the target variable value in which the model is trying to predict is
well-known as Concept Drift. A model which adapts itself over time holds more
chances to find a true anomaly than another model without such characteristic.
Therefore, this feature is also important to find true anomalies, for more details,
see [29] and [11]. Except [4] which applies adaptive function in its complex event
processing (CEP), none of the other works we discussed in this work holds this
characteristic in their approaches.

The expert knowledge data issue addresses interesting challenges for the
anomaly detection in traffic condition. The expert knowledge along with a base
of knowledge acquired during the detection process in traffic conditions data
stream is an interesting challenge which should receive more attention from
now on, because this topic has not been well explored in traffic conditions data
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streams domain and its use can raise the rate of true anomalies by reducing the
uncertainty in the data. None of works we present in this work approach such
a concept, the exception are [31] and [20] which use traffic network data from
OpenStreetMap3 (OSM).

Straightforward and lightweight anomaly detection approaches lead to the
data stream analysis in critical environments (e.g. old devices, or even mobile
ones in smart cities). This open task is important in traffic conditions field
since data emitters might apply some privacy constraints, and therewith the
device next to the sensor (e.g. SCATS - region computer) around the city, or
user mobile device (i.e., small agent running in smartphone), (pre-)processes
part of the data stream before send it to a central server. Therefore, anomaly
detection approaches must also satisfy such resource constraints on consumption
of energy/battery, CPU and memory.

5 Streaming Frameworks for Anomaly Detection

The implementation of previously presented real-time event detection algorithms
(Section 4) and event pattern matchers (Section 3) is usually done in a streaming
framework. A streaming framework models the data flow in the analysis process
and therefore the connections of the streams to the individual process steps. The
data from one step to the next is transferred as messages. In general, a streaming
framework is characterized by the following features [7]:

– Message Processing Semantics describes how often a message is processed
in the framework, and which ordering of the messages is assumed by the
framework.

– State Handling and Fault Tolerance describing how the streaming frame-
work provides fault tolerance. Usually, a streaming framework provides fault
tolerance by resending data that has not been acknowledged by the recipient.

– Scalability describes how the streaming frame work scales out in case of
increasing resources.

– Portability describes whether the execution is bound to a specific platform,
or whether it could also be executed in other, e.g. embedded, environments.

In [7] the state-of-the-art streaming frameworks are compared according to this
feature list.
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