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Abstract—In recent years we have witnessed a growing interest
in trip planning systems aiming at organizing daily travel
schedules in smart cities. Such systems use specialized engines
to find optimal means of transport between two geospatial
endpoints to provide recommendations to citizens for short
routes across the city. At the same time, alternative means
of transportation, such as bike sharing systems, have enjoyed
tremendous success since they offer a green and facile solu-
tion for daily commuters and tourists. However, one major
challenge of the bike sharing systems is that the distribution
of bikes among the stations can be quite uneven during rush
hours or due to topography. This often results in shortage of
bikes and increasing numbers of disappointed users. Existing
works in the literature are limited since they only focus
on predicting the demand or apply a-posteriori methods for
balancing the load of stations. Furthermore, none of these
works consider the benefit of these systems in concert. In this
work, we present “MOToR” (MultimOdal Trip Rebalancing),
a system that builds upon the OpenTripPlanner framework to
incorporate dynamic transit schedule data while balancing the
availability of bikes among the bike stations. Our experimental
evaluation shows that our approach is practical, efficient and
outperforms state-of-the-art methods for route planning.

1. Introduction

In the recent years, the concept of smart transportation
systems has gained increasing interest as a mean of en-
hancing the quality of daily commute for the citizens. A
wide range of smart transportation applications have been
developed to address various aspects of the transportation
systems such as crowd based traffic information [1], [2],
emergency response systems [3], trip planning systems [4],
[5] etc. Moreover, recent types of transportation systems,
such as bike sharing systems, have initiated a new era in the
research community. It was recently shown that bike sharing
systems act as sensors of human mobility across the city [6],
since people resort, with an increasing rate, to using such
systems as an alternative, eco-friendly and entertaining way
to commute to destinations across the city.

The rapid development of applications that implement
multi-modal trip planning, combining transit, pedestrian,
bike and car segments, has generated significant scientific

interest recently. People increasingly utilize smart trip plan-
ning systems to facilitate their commutes across the city.
Real-time information about transit schedules, availability
of transportation modes and the estimated time of arrival
to a preferred destination, are only some of the aspects
studied in the bibliography [7], [8], [9], [10]. One of the
most interesting problems in smart transportation systems,
is how to appropriately combine various and different types
of transportation networks for route planning, in concert,
not only for the benefit of the users but also for the benefit
of the operation of the urban structures. The performance
of an urban structure depends not only on the city’s static
infrastructure facilities but also on the quality and availabil-
ity of such systems. For instance, a proposed route from
a route planning systems may combine multiple modes of
transportation, including cycling as part of the trip. In cases
that no bikes or docks are available, users can easily be
frustrated, for both the trip planning system and the bike
network, since users will consider both of them inadequate
to use for their daily needs.

The concept of multi-modal transportation comes with
an additional effort which is by far more difficult than solely
accommodating car drivers. Each transportation medium has
different priorities and needs for street space allocation. On
every street planning process, trade-offs between the cor-
responding benefits arise when choosing among supporting
one transportation medium instead of another. For example,
in a given geographical area, setting up a bike station instead
of a bus stop, may reduce costs and serve more people at the
same time instead of a bus stop. When designing intelligent
transportation systems, it is essential to optimize more than
a single objective. From one side we aim at enhancing user
satisfaction from publicly available services, while on the
other side we aim at reducing the operational costs and pro-
viding a healthier environment. Thus, the key challenge is to
succeed in optimizing concurrently these multiple objectives
with the least cost, but it is not a trivial task. Since humans
are intrinsically social creatures, their mobility needs have
a strong connection and impact route planning. Our goal
is to enhance the multi-modal route planning process and
exploit it accordingly so that it facilitates rebalancing of
bikes among bike stations in the city. Better balancing of
the bikes at the bike stations results to more satisfied users
that will select this transportation medium. Consequently,



the environmental footprint of the city will be reduced as
users choose more eco-friendly means of transportation.

This paper proposes a crowd-based eco-friendly multi-
modal trip planning approach that explores solutions that
optimize the route planning process while balancing bikes
at the bike stations across the city. This is a challenging
problem: First, when designing multi-modal route planning
approaches, it is necessary to provide tractable travel rec-
ommendations to users. For this case, dynamic informa-
tion about temporal constraints, such as transit times and
departure schedules, need to be seamlessly incorporated,
since in real-life, schedules are not always met [10]. The
second challenge is to predict the bike demand changes at
the stations. Rebalancing can be a costly procedure [11] and
therefore it is necessary to have an accurate view for each
one of the bike stations of the network. Predicting the bike
demand change is attributed to several factors including the
location of bike station, day, time, etc. However, as we illus-
trate extensively in the following sections, the bike demand
change does not follow a known mathematical distribution
(despite the fact that bike demand itself can be modeled
using known statistical models). The bike demand change is
an appropriate metric that captures a bike station’s tendency
for requiring bike redistribution over the day [6]. Therefore,
it is necessary to build a per-station bike demand change
model that can predict this behavior more accurately, instead
of incorporating a single model for every station. Finally,
the last challenge is how to design a crowd-based system
that despite users’ personal preferences will succeed in
satisfying multiple objectives such as the better distribution
of bikes, users’ satisfaction for route planning using multiple
means of transportation and reduction of the environmental
footprint of the city.

Prior work limitations. Despite some recent works
that apply prediction methodologies to estimate the bike
trip demands [12], [13], [14], [15], [16], the aforemen-
tioned studies are limited as they aim at minimizing only
the relocation cost based on the predicted demand without
proposing a strategy that could exploit the bike sharing
system’s users instead of city operator’s rebalancing trucks.
Moreover, predicting only the bike demand is not adequate,
since it fails to capture bike stations’ trend for requiring
bikes to be dropped-off or picked-up and its respective level
concurrently. Furthermore, existing works in the literature
still suffer from the cost of redistributing bikes using trucks
or rely on price-design mechanisms [17] that require ad-
ditional fees in order to succeed. Finally, related works in
trip planning do not employ dynamic transit information
about delays [18] but only make simple assumptions on
how to cope with them, in contrast with the multi-modal
approach proposed in our work. Therefore, recognizing the
unique bike demand trends presented in each bike station
and exploit them appropriately to redistribute bikes, while
optimizing the route planning process, is the focus of our
work.

Contributions. In this work, we propose “MOToR”, a
fast multi-modal trip planning approach that optimizes both
the route planning process and facilitates better balancing of

the load of bike stations across the city. Our contributions
are summarized as follows:

• We propose a multi-modal trip planning algorithm
that incorporates dynamic travel information, cap-
tures real-time delays and provides travel recommen-
dations in a time-efficient manner in real-time.

• We propose a prediction scheme, based on random
walk method and model the factors that affect bike
demand, so as identify the bike demand change at
bike stations.

• We implement our solutions on the OTP framework,
a widely utilized engine for multi-modal trip plan-
ning.

• We evaluate the performance of our proposed
scheme using real-world datasets from the city of
Warsaw.

The rest of the paper is structured as follows: In section
2, we provide some preliminaries including our System
Model, model the factors that affect the bike demand at
stations and we define our dual objective problem. In section
3, we extensively describe our approach. In section 4, we
present our experimental evaluation. Section 5 describes
related work and finally, in section 6, we conclude with
lessons learnt from this work.

2. System Model

In this section we first describe our system model, model
the factors that affect the bike demand at bike stations and
then we define our dual optimization problem.

2.1. Preliminaries

Transportation Systems. Typically, smart cities em-
ploy various and different means to server the human need
for transportation along the city. Such systems, typically
consist of bike sharing systems, where users commute from
place to place using bikes, transit systems, where users
utilize tram or metro lines for their transportation needs or
other traditional means such as buses or taxis. In our work,
we assume that citizens utilize multi-modal transportation
solutions for their trip planning, combining transit, pedes-
trian, bike and car segments, for their commutes. Multi-
modal transportation systems are typically [9] defined as
graphs G = (V, E), where each vertex of V , can be either a
bike station or a transit stop and each edge of E , annotates
the connection from a place to another using different means
of transportation.

Users. A user u ∈ U of our system is a citizen that
travels along the city. Users typically utilize existing means
of transportation such as the transit network or the bike
sharing systems to move from one place to another. A user
u ∈ U of the system can be defined by her age ageu,
her personal preferences over the available means of trans-
portation prefu and her personal tolerance to time delays
thresu. The tolerance to time delays of the user expresses



the percentage of the maximum amount of time the user is
willing to spend travelling around the city. Moreover, users
are typically characterized by their current location, which
is defined as the pair of geospatial coordinates (latu, lonu),
which annotate their presence in the area of the smart city.

Trip Plan Query. Users u ∈ U of our system issue
queries qu in order to receive directions for commuting
from a specific geospatial point A to a destination geospatial
point B. A trip plan query is characterized by the following
tupple:

qu : 〈oqu , dqu , tqu〉

where oqu is the origin point (i.e. the geospatial coordinates
where the user u begins his trip), dqu is the destination point
(i.e. the geospatial coordinates of the destination of the user)
and tqu is the starting time of the user’s u trip.

Route Leg. In trip planning systems, once a user u
issues a trip plan query qu, he receives a set of consecutive
path segments to follow until reaching his final destination.
We denote such path segments as route legs tljTrk

. A route
leg tljTrk

is characterized by the following tupple:

tljTrk
: 〈Trk, otl, dtl, durotl→dtl

,modetl〉

where Trk annotates the id of the trip which consists of this
route leg, otl is the origin point of the specific route leg, dtl
is the destination point of the specific route leg, durotl→dtl

reflects the amount of travel time required from point otl to
point dtl and modetl annotates the means used for traversing
the specific route leg, such as ”WALK”, ”BICYCLE” or
”TRANSIT”.

Route. A typical response of a trip planning system is
a set of consecutive route legs tljTrk

that the user should
follow to reach her final destination as reflected by her
issued query qu. We define this set as a route Rqu . More
formally, a route Rqu is defined as a list of consecutive route
legs tljTrk

as follows:

Rqu : {tl1Trk
, tl2Trk

, ..., tlnTrk
}

where each tljTrk
annotates the j − th route leg the user

should traverse before arriving to her final destination.
Bike Stations. We assume a Bike Sharing System

comprising a number of bike stations bi ∈ B. Each bike
station bi is characterized by the tuple: 〈i, lati, loni, capi,
availi, docki〉, where i is the unique id of each bike station,
lati, loni represent the geographical coordinates of the sta-
tion, latitude and longitude, capi denotes the bike capacity
of the station (i.e., the amount of bike racks of the station),
availi reflects the current bike availability at the station and
docki denotes the number of free docks for parking bikes.

Bike Station NetFlow. A key characteristic of bike
stations is their demand, expressed either as pick-up or drop-
off. We denote the bike drop-off demand at each station
bi at timeslot t as ddti. The drop-off demand is calculated
as the frequency df t

i with which bikes become available
at station bi during time period t, i.e., number of bikes that
arrive at bi within time interval t, divided by the time during
which there are available parking racks at the station: ddti =

dft
i

dat
i
. Similarly, we denote the pick-up demand as pdti, as the

frequency with which bikes depart from the bike station bi,
i.e., number of bikes that depart from the station divided
by the time that there are bikes available during the time
interval, as: pdti =

pft
i

pat
i
. Finally we denote the difference

between the drop-off demand and the pick-up demand as
net-flow nf t

i = ddti − pdti. The notion of netflow has been
used in recent works [6], [19] to reflect how balanced the
bike stations are. When the value of net flow at a station
is zero this indicates that the entire bike demand, i.e., bikes
that arrive and depart, is balanced. We also annotate a bike
station that has positive, negative or zero netflow at timeslot
t as b+i,t, b−i,t & b0i,t respectively.

Netflow Unbalance Score. A key aspect of a bike
sharing system’s operation is how much unbalanced it is.
We need to introduce an appropriate metric that will allow
us to successfully capture and illustrate the performance of
a bike sharing system. While selecting pairs of bike stations
that could be used so that a bike could be picked-up from the
first one and be moved to the latter, this selection has a cost,
in comparison with another combination of bike stations.
We define this cost as the sum of netflow that occurs after
selecting the specific station for either picking up from or
dropping-off a bike to. More formally,

score(bi) =

{
(nf t

i′ − 1) +
∑
∀b+i

nf t
i , i 6= i′, if nf t

i > 0

(nf t
i′ + 1) +

∑
∀b−i

nf t
i , i 6= i′, if nf t

i < 0

Having define the score function, we need to calculate
the netflow unbalance score nus(b+i , b

−
i′ ) that captures how

much the system is unbalanced when the specific combina-
tion of bike stations are chosen. More formally,

nus(b+i , b
−
i′ ) = |score(b

+
i )|+ |score(b

−
i′ )|

2.2. Modeling Bike Station Demand

Our work is motivated by the fact that there are several
factors that may affect the bike usage across bike stations
during the day [6], [15].

In the following, we aim at identifying the key features
that affect the bike usage focusing on Warsaw City, where
we are witnessing a growing interest in utilizing bikes
for daily commuting. We have implemented MOToR and
deployed it in the VaVeL system1 to provide route recom-
mendations in the City of Warsaw. We graphically illustrate
the average number of bike trips per station conducted by
users on both weekdays and weekends. As we observe from
Figure 1, users resort to using bikes for their commuting
during the morning and the afternoon rush hours (8 to 10am
and 4-6pm). However, we observe that the number of trips
per station is higher during the afternoon rush hours. We
reason this to the fact that users prefer bicycles instead
of other traditional means as an alternative, healthier and
recreational way to commute back to their personal space.
Additionally, during weekends, we observe from Figure 2

1. http://www.vavel-project.eu/
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Figure 1. Hourly Bike Demand on week-
days
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Figure 2. Hourly Bike Demand on week-
ends

(a) 8:00-10:00am (b) 16:00-18:00

Figure 3. Bike demand at bike stations on morning and after-
noon rush hours

that people resort to bikes for their activities for a greater
amount of time (higher bike demand during 12pm to 8pm).
Therefore, we may conclude that the type of day (weekday
or weekend) plays a significant role when trying to model
bike demand. Finally, in Figures 3a & 3b, we draw the bike
station netflow for station around the Warsaw City center.
As we observe, stations around the city center present higher
outgoing bike demand instead of ingoing bike demand
during the afternoon. This is an expected phenomenon,
known as complementarity effect [6], but quite important
to understand how citizens behave while using bikes during
the day. For the case of Warsaw city, we may conclude that
users are highly interested on using bikes for leaving the
city center during the afternoon.

2.3. Problem Definition

Hereby, we present our dual optimization problem. Our
goal is twofold: maximize the number of bike stations that
are balanced and optimize the route planning process by
incorporating dynamic real-time information about schedule
delays. We aim at incorporating the route planning process
in concert with a rebalancing procedure in order to support
certain demand levels at bike stations across the city. Having
predicted the change of bike demand at bike stations near
the origin and destination points, we aim at selecting the best
route so that the number of bike stations that are balanced
is maximized and the trip time duration is minimized by the
incorporation of the dynamic transit schedule data.

Figure 4. Problem overview

An overview of our optimization problem is illustrated
in Figure 4. We assume a set of bike stations bi ∈ B. We
also assume a route Rqu generated from the trip planning
system from an issued user query qu. We identify the bike
stations which are near the origin and destination points

of the route Rqu and form a set Bcheck. Utilizing the
origin and destination point of the user query, oqu , dqu

respectively, the bike stations bi ∈ Bcheck and the start and
destination points of the route leg tljTrk

of route Rqu where
modetl = ”TRANSIT”, we form a weighted directed
graph G′ = (V ′, E′), where each vertex vw ∈ V ′ annotates
the respective geospatial point and each edge ewz ∈ E′

annotates the path from vertex vw to vertex vz . Moreover,
each edge ewz has a respective weight fwz which is defined
as the time required to traverse edge ewz . Furthermore,
since we aim at maximizing the number of stations that
are balanced (having netflow equal to zero), our goal is to
minimize the netflow unbalance score, defined in section 2.1.
Therefore, our dual optimization problem can be expressed
formally as follows:

max F (x) = −
∑
i

∑
i′

(xii′ ∗ nus(b+i , b
−
i′ )), (1)

min G(x) =
∑
w

∑
z

(xwz ∗ fwz) (2)

xii′ ∈ {0, 1},∀i 6= i′ (3)
xwz ∈ {0, 1},∀w 6= z (4)

where F(x) in Equation 1 annotates the netflow unbal-
ance optimization objective, which we need to minimize,
whereas G(x) in Equation 2 annotates the travel time dura-
tion which we need to minimize as well. Equation 3 denotes
whether we should select the specific pair of bike stations
or not, so that the travel time duration is minimized and the
netflow unbalance score is also minimized. Finally, Equation
4 denotes whether we should select the specific pair of nodes
or not so that the trip time is minimized.

3. Our approach

In this section, we describe our approach towards solv-
ing our dual optimization problem. First, we introduce the
necessary methods for predicting the change of demand at
bike stations. Then, we proceed on describing how our route
planning process incorporates dynamic transit data so as to
generate the shortest route for a given user query. Finally,
we present how these two different components are used in



concert for implementing the “MOToR” algorithm and we
give a brief analysis of the algorithm’s complexity.

3.1. Bike Demand Change Prediction

Our primary goal is to estimate which of the bike stations
near the origin and destination endpoint of the user query
require to be balanced. A few recent techniques have been
proposed in the bibliography for predicting the demand
at bike stations using non-parametric statistical regression
techniques [20], random forest techniques on mobility mod-
els per station [21] and multi-similarity weighted KNN
approaches [15] for the prediction process. However, these
approaches are limited, since, our goal is to select bikes
from stations that have positive netflow (users drop-off bike
with higher rate than picking up) to be moved to stations
with negative netflow (where users pick-up bikes with higher
rate than dropping-off). These methods fail to capture this
change on bike stations and cannot fit in our setting. For
this purpose, we resort to the random-walk method [22],
which is a forecasting technique that captures the change of
a quantity based on its value on a previous time period.

In our approach, we use a modified random-walk method
to estimate the bike demand change on each bike station,
given historical data of bike demand, for a given timewin-
dow. Our goal is to estimate the bike station’s netflow and
identify the stations that are unbalanced and for which, it is
required to either pick-up bike from or drop-off bikes to.

Modeling NetFlow Change. A necessary step for
the prediction process is to model the netflow behavior.
During our experimental analysis, we observed that bike
stations present different patterns of netflow changes on a
per-hour basis. Therefore, we argue that it is not possible
to incorporate a known statistical distribution that could
successfully capture the bike station netflow change for all
stations. In order to predict the bike station netflow change,
we propose a generic linear model that helps capture this
change. More specifically, the netflow nf t

i of a bike station
at timeslot t can be computed as the sum of the netflow of
the previous timeslot nf t−1

i with an estimated bike change
c∗t,dw for the timeslot t and the type of day dw from the
historical data. More formally:

nf t
i = nf t−1

i + c∗t,dw

Demand Change Prediction. As aforementioned, we
utilize a modified random-walk method to capture this
change of demand, which is illustrated by the netflow metric.
The random-walk-with-drift method we utilize, requires the
estimation of the parameter c∗t,dw, which is the step size.

Therefore, the first step of the prediction process, is to
estimate the value c∗t,dw, given the historical data, for the
timeslot t. To do so, we generate the average value of c∗t,dw
utilizing the observed changes of netflow at the bike station
for the timeslots t and t − 1 in the historical data and for
the same type of day dw. Since, this prediction process is
conducted on a per-bike-station basis, it helps capture the
unique behavior of the bike station’s netflow and therefore,

it can provide more accurate results of the bike demand
change.

The final step of the prediction process is to estimate the
bike station’s netflow at timeslot t. The traditional random-
walk method requires tossing a coin in order to select
whether, we should move up or down. However, in our case,
we loose this constraint, since the sign of the estimated bike
demand change encapsulates this behavior(positive-going up
and negative-going down). Given the actual bike station
netflow at the previous timeslot t − 1, the value of nf t

i

is computed as the sum of nf t−1
i and the estimated bike

netflow change from the previous step c∗t,dw for the required
timeslot t and the specific type of day dw.

Figure 5. Modified Random-walk Method

In Figure 5, we illustrate how the prediction method
is conducted at each bike station. Given estimated step
size c∗t,dw from the historical data and the previous netflow
value nf t−1

i , the modified random-walk method estimates
the netflow nf t

i at timeslot t.

3.2. Enhanced Dynamic Travel Planning

During the travel planning our trip computation method
searches the shortest path from the origin oqu to the desti-
nation dqu using the standard cost metrics included in OTP.
OTP supports multi-modal trip computation, and usage of
different trip computation algorithms on the travel modes.
Initially, the origin and destination locations are mapped to
the traffic network (a process also known as MapMatching),
with the resulting vertices a shortest path search along the
traffic network is performed as follows. Suppose we have a
graph G = (V,E), with E ⊆ V × V and a cost function
mapping c : E 7→ R+. A path of length n from a vertex
v0 ∈ V to a vertex vn ∈ V in this network is an alternating
sequence of vertices and edges P (v0, vn) = (v0, e0, . . . , vn),
with ∀vs : vs ∈ V and ∀eg = (vg, vg+1) : (vg, vg+1) ∈ E.
The cost of such a path is the sum of the edgewise costs
c(P (x0, xn)) =

∑
eg∈P c(eg). Trip computation from v0 to

vn is the search for the path P ∗(v0, vn) with the minimal
costs:

P ∗(v0, vn) = argmin
P (v0,vn)

c(P (v0, vn)) .

Standard solution to the problem is using Dijkstra’s
algorithm [23]. Given the graph G = (V,E) and v0, vn ∈



TABLE 1. TRANSFER PATTERN EXAMPLE

line L17 S154 S097 S987 S111 · · ·
trip 1 8:15 8:22 8:23 8:27 8:29 8:38 8:39 · · ·
trip 2 9:14 9:21 9:22 9:28 9:28 9:37 9:38 · · ·

TABLE 2. TRANSFER PATTERN EXAMPLE (CONTINUED)

S097: (L8,4) (L17,2) (L34,5) (L87,17) · · ·
S111: (L9,4) (L13,5) (L17,4) (L55,16) · · ·

V , it initializes a queue of nodes Q = V and a dis-
tance function over V × V with dist(v0, v0) = 0 and
dist(v0, vn) = ∞,∀v 6= v0, v ∈ V . Until the queue is
empty the node vw with the smallest distance dist(v0, vw)
is picked and removed from Q. For each neighboring node
of vw the distance is updated as follows: dist(v0, vn) :=
dist(v0, vw)+ c(P (vw, vn)), if the latter is smaller than the
former. Dijkstra’s algorithm can be sped up by running it si-
multaneously from both v0 and vn until a common node vw
is hit. In OpenTripPlanner [4], street based trip computation
is performed by a A∗ algorithm, a possible speedup could be
usage of Contraction Hierarchies [24]. Public transport rout-
ing poses additional requirements to the trip computation as
trip availability becomes time-dependent and also waiting
times at a particular transfer stop must be incorporated in
the algorithm. Besides the time-extended or time-depending
A∗, Transfer Patterns [18] provide a state-of-the-art method
to speed trip computation in public transport networks up.
However, transfer pattern do not necessarily provide correct
answers in the likely case of delays of the transit vehicles.
Thus, we utilize the Dynamic Transfer Pattern proposed in
[10]. The trip planning requires a preprocessing of the transit
schedules as follows. For each public transport line a table
is stored denoting in the columns the stops along the line.
In this way it holds the maximal possible route without
changes. The rows of the table represent the actual trips
of the line and Table 1 provides an example.

In addition, for every station a list is stored with the
passing lines and their position in the trips, see an example
in Table 2.

With Transfer Pattern a route from Sstart to Sstop at
time t is calculated by the intersection of the lists for Sstart

and Sstop, the first connection after time t is the desired
result. As an example, the route from S097 to S111 at 9:03
is computed by intersecting the lines in Table 2, we find
that line 17 connects the stops on positions 2 and 4. Earliest
possible trip is, according to Table 1 departing 9:22 at S097
and arrives at S111 at 9:37.

Besides this temporal information, Transfer Pattern also
store the graph structure of the transit network (neglect-
ing temporal information). In the pre-processing phase the
shortest paths amongst all pairs of stops are constructed,
and intermediate stops are stored in a directed acyclic graph
(DAG). The approach in [10] incorporates potential delay
information already in the pre-computation phase, and adds

Figure 6. DAG structure of the dynamic transfer pattern.

additional transfer possibilities to the DAGs created during
transfer pattern creation, see Figure 6.

In case of dynamic schedule information, the time table
information (Table 1 in our example) can be updated and the
route computation could be performed as in the regular case
[18]. However, it might be that the optimal transit connection
differs as new connections could be enabled by the delay
itself, especially if multiple lines arrive belated incorporation
of the delays in trip computation provides useful benefit to
travellers.

3.3. MOToR Algorithm

Hereby, we present “MOToR” strategy towards balanc-
ing the bikes of the bike station network comprising the bike
demand change prediction and the enhanced dynamic travel
planning in concert.

Given a user query qu, the enhanced dynamic travel
module of the OTP instance generates an initial route
Rqu , which incorporates real-time delays for the travel
time cost calculation. This is performed by the method
GenerateInitialTransitRouteFromOTP (). The gener-
ated route consists of a route leg tljTrk

where modetl =
”TRANSIT”, which fulfills the shortest in time criterion
of the user using transit as the transportation medium. Then,
the route Rqu is forwarded to the bike station prediction
module. At this step, we identify all the bike stations
near the endpoints of the transit route leg tljTrk

using
the method NearByBikeStations() for both the first and
the last transit stop. For all these stations, we predict the
netflow change in the next future timeslot using the method
PredictNetF lows(). This step helps identify the stations
near the origin endpoint of the tram route that a bike
could possibly be picked-up and which stations near the
destination endpoint of the tram route require more bikes
to be dropped-off. Given the origin and destination points
of the user query, this module generates all the possible
combinations of routes that could be proposed to the user
utilizing both bike and transit network using the method
GeneratePossibleRoutes().

The final step of the “MOToR” algorithm is to select
the appropriate route that fulfills certain time criteria, but



Figure 7. Flow of our approach

Input: User Query qu
Output: Shortest route satisfying constraints

1: Rinit = GenerateInitialTransitRouteFromOTP (qu);
2: L1 = NearByBikeStations(FirstTransitStop,Rinit);
3: L2 = NearByBikeStations(LastTransitStop,Rinit);
4: [B+, B−] = PredictNetF lows(L1, L2);
5: PR = GeneratePossibleRoutes(B+, B−);
6: CR = RunShortestPath(PR, thresu);
7: for (cr : CR) do
8: nus = findNUS(cr);
9: if (nus ≤ optimal) then

10: optimal = nus;
11: bestRoute = cr;
12: end if
13: end for
14: return bestRoute

Figure 8. MOToR algorithm

also helps rebalance the bike station network. At this point,
we first need to identify the shortest in time route, which
can be proposed to the user. We utilize a very well known
technique [23] to identify the shortest path from the origin to
the destination endpoint of the user query using the method
RunShortestPath(). Given the user’s tolerance to travel
duration time, we also acquire the set of paths that are within
the given duration time constraints. Given the second part
of our optimization problem, we need to optimize the bike
sharing system’s netflow unbalance. For this purpose, we
utilize the Netflow Unbalance Score in order to filter the
candidate routes and select the respective one that achieves
the least Netflow Unbalance Score. Finally, the route that
optimizes the route planning process, as illustrated in the
respective travel time duration and has the least Netflow
Unbalance Score is returned to the user. A graphical illus-
tration of our approach can be seen in Figure 7 and the steps
of our algorithm are summarized in Figure 8.

Worst-case Complexity. The algorithmic complexity
for deriving the route using the enhanced dynamic travel
planning component is equal to the complexity of the A∗-
algorithm (O(bd)). Let us assume m bike stations with
positive netflow and n bike stations with negative netflow.
We form a graph G′ = (V ′, E′), using the origin and
destination endpoints of the user query, the bike stations
and the transit stops, as illustrated in Figure 4. Running
the Dijkstra algorithm over the graph G′ has an algorithmic
complexity of O((|V ′|+ |E′|) ∗ log|V ′|). Given that we run
this for k iterations so as to identify the sets of other possible
routes that are within the acceptable user threshold, the
complexity is O(k∗(|V ′|+|E′|)∗log|V ′|). Finally, since we
have to check the set of the generated routes for optimizing
the systems unbalance, we need to check k routes, therefore
the final complexity is O(k∗(|V ′|+|E′|)∗log|V ′|)+O(bd).

4. Experimental Evaluation

We conducted a set of experiments to illustrate the
benefits of our approach in terms of the quality of our

prediction model and the quality of our proposed algorithm
for the dual objective optimization problem using datasets
from real systems. Our goal was to identify the advantages
of our approach with respect to the following metrics: a)
prediction performance, b) rebalancing performance and c)
trip time duration optimization.

4.1. Experimental Setup

Datasets. We use two heterogeneous sources of real-
world data from the city of Warsaw in order to evaluate
our proposed algorithm. The datasets provide information
regarding the bike availability of bike stations and the pos-
sible routes between different pairs of source and destination
endpoints using only transit network.

Bike availability dataset. We utilized a real bike
availability dataset from the city of Warsaw. The available
bike data expand from August 6th to August 31st. The
dataset provides information about, the bike station id, the
geospatial coordinates of the station, latitude and longitude,
the number of bikes available to pick up, the number of
docks available to park a bike, the total number of bike
racks, which denotes the capacity of the bike station, and,
finally, a list of bike ids for bikes that are available for pick-
up. The data where collected using a two minute sampling
frequency, which has been used [25] to better capture the
activity of bike stations. Then, the data were preprocessed
so as to find the necessary bike demand values on a timeslot
of 1-hour length.

Routes dataset. In order to evaluate the trip time
duration performance, we synthetically generate a dataset of
origin and destination pairs for the city of Warsaw. Given
eight different types of routes, (i.e., crossing the city center
(for variable route length), going from suburban areas to city
center, from suburban areas to other suburban areas e.t.c),
we generated a set of perturbated origin and destination
endpoints for each one of these eight different types. Each
pair of the set was used to generate the appropriate routes
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Figure 11. Travel time duration improvement
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Figure 12. Duration Improvement: 0% Toler-
ance
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Figure 13. Duration Improvement: 30% Toler-
ance
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Figure 14. Duration Improvement: 60% Toler-
ance

using the transit network. To achieve that, we have set up
an OpenTripPlanner instance using real GTFS data from
the city of Warsaw, upon which we queried and derived
the necessary route information. The route response from
OTP contains information about the start and destination
endpoints of the user query, the geospatial coordinates of
the transit stops along the route and the time required for
each route leg (walking from origin, transit, and walking to
destination).

4.2. Evaluation

Evaluation Scenario. We have set up the following
scenario. For each route in the routes dataset, we identify
and construct a set of stations that are within a walking
distance of 500m (5 minutes) from the first and the last
tram stop respectively. We aim at optimizing bike stations
very close to the transit stops. Then, for each bike station
in the sets, we predict its bike demand change, and identify
whether this station is appropriate to pick-up a bike from
or requires bikes to be dropped-off. After having predicted
the bike demand change for all the bike stations in the sets,
we keep only those that have a bike station netflow value
greater or less than zero. Given the sets of stations, we use
a path generator in order to get the routes to check, which
contain cycling as part of the trip. Finally, for the constructed
set, we identify those that satisfy both objectives, least trip
duration time and less unbalance of the system. In order to
evaluate the performance of “MOToR”, we have developed
a set of baseline approaches. The first baseline approach we
developed was the MaxLeast approach. This method returns
the route that bypasses a bike station with the maximum

value of positive netflow near the first tram stop of the
route and bypasses a bike station with the least value of
negative netflow near the last tram stop of the route. The
second baseline approach we evaluated “MOToR” against, is
an Only Transit approach, in which the returned route to the
user contains only ”transit” as the transportation medium.

Prediction Performance. We evaluated the perfor-
mance of “MOToR” prediction method for each one of the
routes in our scenario. We utilized the R2 metric [26], which
is a common metric for evaluating the performance of a pre-
diction method, given the size of the training dataset. This
metric provides a measure of how well observed outcomes
are replicated by the model, based on the proportion of total
variation of outcomes explained by the model. Values near
to one are considered to be better. As we observe from
Figure 9, “MOToR” prediction method achieves very good
performance even for low percentage of the training set.
We conclude that the proposed linear model based on a
modified version of the random-walk method is appropriate
for predicting the bike demand change, since it succeeds in
capturing the unique trends of bike demand change of each
bike station.

Rebalancing performance. Next, we evaluated the per-
formance of “MOToR” regarding its efficiency to improve
the netflow unbalance score at bike stations near the first
and the last tram stop of each route. We conclude from
Figure 10 that as the percentage of user tolerance increases,
“MOToR” outperforms its competitors. We also observe that
the average netflow unbalance score decreases as the toler-
ance to delays increases. This is an expected outcome, since
“MOToR” considers more candidate routes, and therefore
favours routes with lower netflow unbalance score. Finally,



we observe that our approach is beneficial for urban areas
with high number of bike stations available nearby the transit
stops, since we optimize the ”first” and ”last” mile of the
user’s route while at the same time balancing the bikes at
nearby stations (for distances up to 500m from the transit
stops). However, this distance is a tunable parameter and if
we increase the distance we expect that even more stations
will be balanced.

Travel time duration optimization. Finally, we evalu-
ate the performance of “MOToR” regarding its efficiency to
minimize the travel time routes. As we observe from Fig-
ure 11, “MOToR” outperforms the ”MaxLeast” and ”Only
Transit” approaches and can achieve improvement of at least
30%, even for users that do not tolerate any additional
trip time at all. We conclude that “MOToR” succeeds in
identifying routes that minimize the travel time duration,
instead of using only transit. Additionally, in Figures 12,13
& 14, we draw the normalized average travel time duration
for the three route length categories of our dataset (small,
medium and large) and for a given user tolerance of 0%,
30% and 60% respectively. We observe that “MOToR”
outperforms its competitors, even for the highest tolerance.
For instance, for 30% tolerance, “MOToR” derives routes
with values equal to 331sec, 855sec and 915sec for each
category, whereas ”MaxLeast” derives 443sec, 917sec and
950sec for the same categories. This result is achieved as we
take care of the ”first” and ”last” mile problem of the user’s
trip. Finally, it is clear that “MOToR” succeeds in satisfying
both objectives of route planning and bike rebalancing.

5. Related Work

Bike Rebalancing. Existing state-of-the-art methods fo-
cus either on prediction methods [13], [14], [15], [16], [20],
in which, authors propose systems that do not consider user
route planning as a means of rebalancing bikes and vehicular
optimization methods [27], [28], in which algorithms solve
the relocation from other aspects such as optimal station-
to-station route design and inventory management. In [13]
authors model the parameters that affect the bike demand
during the day and predict it for a given future timewindow.
However, their work is limited since, they do not focus on
how to handle unbalanced stations, as we do in our work.
In [14], authors mainly focus on identifying over-demand
stations during large events. However, their approach is
limited since their rebalancing procedure relies solely on
vehicular methods, whereas, in our approach, we optimize
both the route planning process, but also rebalance the
system, without application of vehicular strategies. In our
previous works [6], [19], we illustrated the benefits of bike
rebalancing during large scale events and have illustrated
how human mobility can be extracted using bike sharing
systems. However, in this work, we focus on a totally
different approach, where the objective is to generate trip
recommendations combining route planning techniques with
bike rebalancing.

Route planning. There has been extensive work in
the bibliography regarding the route planning problem [7],

[8], [9]. However, the proposed methods are limited since
they solely focus on optimizing the travel time duration
parameter, without focusing on optimizing the performance
of another means of transportation, such as bike sharing
systems, as we do in our work. In [7], authors solely focus
on identifying the trip that satisfies user time constraints
based on their location. In contrast, in our work, our goal is
not only to find the optimal trip, but also to optimize the bike
sharing system of the city as well. Authors of [9] focus on
identifying overcrowded transit stop stations, and propose an
unobstructed route planning strategy. However, they solely
focus on optimizing the travel time duration, without im-
proving the performance of other means of transportation
concurrently, as we do in our work.

Dynamic Transfer Planning. In a realistic route
planning scenario, various delays occur among the public
transport vehicles. In contrast to vehicular traffic, trams and
trains can not overtake, and vehicles in transit networks
wait for each others (e.g. connecting trains), this causes
delays to propagate differently than vehicular traffic jams. In
addition, two modes of transportation may share the same
physical resource (e.g. buses or trams riding on vehicular
street). Thus, two forms of delays in transit networks are
distinguished in literature: 1) a vehicle is late due to own
reasons, and 2) other vehicles are late caused by the former
[29]. Several models for transit delays are reported in liter-
ature. The work in [30] assumes independence. In contrast,
[31] allows delays to cumulate. Sophisticated models in-
corporate dependencies among the vehicles into the delay
[32]. In [33] the delays are analyzed visually. In a trip
planning application real-time predictions of delays are a
main benefit as future delays may influence the route choice.
Thus, we highlight few recent works on delay prediction and
delay recognition: [34] applies queueing theory and assumes
delays to aggregate, [35] detects delays and unexpected
vehicle movement in real-time from the GPS traces, and [36]
predicts delays per line based on its previous delay and the
delay information of earlier trips at surrounding locations.

6. Conclusions

In this paper, we presented ”MOToR”, a novel eco-
friendly framework, that helps rebalance a bike station net-
work and fulfill user needs for reliable and efficient travel
time route planning despite any observed real-time delays.
Our contributions are summarized as follows:

• We proposed a multi-modal trip planning algorithm
that incorporates dynamic travel information, cap-
tures real-time delays and provides travel recommen-
dations in a time-efficient manner in real-time.

• We proposed a prediction scheme, based on random
walk method and modeled the factors that affect bike
demand, so as identify the bike demand change at
bike stations.

• We implemented our solutions on the OTP frame-
work, a widely utilized engine for multi-modal trip
planning.



• We evaluated the performance of our proposed
scheme using real-world datasets from the city of
Warsaw.

• We illustrated that our approach is beneficial for
citizens in urban areas, since they can improve their
trip times taking advantage of the large number of
bike stations located nearby transit stops rather than
walking.
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