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Abstract Recently evolved Bluetooth tracking technology is 

currently applied to extract individual pathways, movement 

patterns or to rank popularity of locations by their visitor 

quantities. To utilize this technology for the creation of location 

aware intelligent environments, the next steps are to come up 

with microscopic traffic values. This work proposes a solution for 

this question, namely, a Bluetooth localization and path 

reproduction of individual persons. Our approach applies radio 

signal strength fingerprinting. We introduce and evaluate this 

approach for varying granularities and mobile phone types. The 

result is an accurate reproduction of pedestrian position and 

route choice in a complex facility.  

Keywords-Bluetooth Tracking; Location Awareness; Pedestrian 

Monitoring 

I.  INTRODUCTION 

Major public events (concerts or sport events) attract 
thousands or millions of visitors within a comparatively short 
time period, whereas public buildings (e.g. airport terminals, 
train stations, shopping malls), parks or zoos reach the same 
amount of pedestrians within a much larger time period. While 
both scenarios seem to differ at the first sight, they have the 
uncertainty on people!s preferences and motivations in 
common. Knowledge on people!s presence, movement and 
behavior offers a vast chance for improvement of the signage 
and the infrastructure in order to create intelligent 
environments. Everything provided to the guests depends on 
the pedestrian movement. To give a few general examples: 
locations of information desks, shops or toilettes depend on the 
reachability and quantity of persons, path-widths of the 
corridors in a stadium depend on people!s quantity as well, 
synchronization of digital signage and audio-guides depends on 
the average pedestrian speed, mobile phone networks are 
planned according to the expected movements and even 
locations of advertisement billboards are placed such that they 
achieve highest visit potential. Understanding the movement 
behavior, identification of attractors and distracters, 
determination of waiting times, as well as localization of 
congestions and bottle-necks gives indispensable insights on 
visitor preferences and motivations at a particular public event 
or site and thus supports creation of intelligent environments. 

Currently used technologies to measure these highly needed 
movement data are surveys, video surveillances as well as the 
recently evolved Bluetooth tracking [1,2]. Whereas the first 
solution (surveys) is expensive and hardly representative due to 
the non-random sampling among all visitors, the second one 
(video surveillance) depends on the weather conditions, 
illumination and density of the people and does not seldom 
require special scaffoldings to carry the cameras. Bluetooth 
tracking overcomes all the mentioned shortcomings and offers 
a robust technology which can be applied seamlessly indoors 
and outdoors. Deployment of the required hardware is also fast 
and easy and, most of all, independent of the provided 
infrastructure. Thus, it is a perfect choice to monitor pedestrian 
mobility. Utilizing Bluetooth scanners for pedestrian tracking 
bases on a mesh of radio frequency sensors of certain 
diameters. Whenever a person with a Bluetooth enabled device 
(e.g. a mobile phone or an intercom) passes the footprint of a 
sensor, an entry is attached to a data-log storing the time-
stamp, the position and a unique identifier for this person. Each 
sensor itself generates pedestrian counts. By use of multiple 
sensors, movement patterns and transition times are recorded. 
Expected representativeness is about 7 percent of the visitors 
[3]. The technology is already widely used for performance 
monitoring [4] which just depends on macroscopic movement 
values (e.g. people!s quantities and densities). This work 
focuses on the task to monitor microscopic pedestrian mobility 
from a Bluetooth sensor mesh. Therefore the task is two 
folded: (1) exact localization of persons and (2) individual path 
reconstruction. Our approach utilizes fingerprinting technology 
as well as data mining methods to estimate the most likely 
position or path. 

The paper is organized as follows. Section 2 introduces 
Bluetooth sensors and presents a summary of latest research on 
Bluetooth tracking. Furthermore this section presents state-of-
the-art localization methods. In Section 3, localization is 
addressed. Our fingerprinting approach is discussed and 
performed in a test scenario. In this section, we compare 
different approaches and test them for accuracy. Section 4 
addresses path reconstruction which was stated to be our 
second task. We summarize and conclude within Section 5 and 
give directions for future research. 
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II. RELATED WORK 

Existing indoor tracking technologies are surveys and video 
surveillances. Whereas the first solution (surveys) is expensive 
and hardly representative due to the non-random sampling 
among all visitors, the second one (video surveillance) depends 
on the weather, illumination and density of the people and does 
not seldom require special scaffoldings to carry the cameras. In 
this section we present recent research on Bluetooth tracking. 
Afterwards we describe different position techniques. This also 
includes the radio signal strength based technique, which we 
are going to use in combination with the fingerprinting 
algorithm in the experiments within the next sections.  

A. Bluetooth tracking 

The need for further robust passive localization 
technologies pushed the development of sensors that are 
capable to monitor people's movement. First choice is to track 
most popular digital gadgets: mobile phones and intercoms. 
Analysis of mobile network GSM (Global System for Mobile 
Communications) log files [5] causes strong privacy 
objections. Besides, Bluetooth technology is an emerging 
technology for monitoring tasks [1,2]. Recently evolved 
Bluetooth based mobility sensors have been used for event 
monitoring at a soccer match in France [3] and a car race [4]. 
There, a mesh of Bluetooth sensors has been placed at carefully 
selected indoor as well as outdoor locations. The work in [3] 
extracts the route choices of the visitors and hands them to a 
agent based pedestrian microsimulation in order to extract 
microscopic movement values. In [4] formalization of recorded 
data is addressed. Similarities to other episodical movement 
data are presented as well as methods for their processing and 
visual analysis. Besides event monitoring, also other successful 
indoor applications of Bluetooth scanners are described in 
literature. In [6] various scanners were placed at Dutch train 
stations to record transit travelers. Accurate locating and 
following of objects within complex facilities is as well an 
important research topic [7]. 

So far Bluetooth tracking is used to monitor a sample of 
visitors [3,4,6] and extract their route choices [3]. In few works 
time-geography and movement patterns are addressed as well 
[8]. In contrast, we are going to extract microscopic values 
(pedestrian position and route choice) using Bluetooth 
scanners. 

B. Localization technologies 

For the determination of position using radio waves, 
different approaches exist. There are several position 
techniques, whose usage depends on the type of sensor. 
Furthermore there are different position algorithms which 
depend on the previously used position technique. A typical 
positioning system works as follows: A sensor retrieves a 
signal of a Bluetooth enabled device within reach. Using a 
position technique the values are processed and handed into the 
location algorithm. This estimates a position to the retrieved 
signal [9].  

We give an overview on the most common position 
techniques. Angle Of Arrival (AOA) computes the angle 

between the mobile phone and the sensor. With increasing 
distance this position technique becomes more imprecise due to 
the simultaneously increasing precision requirements. With 
two sensors an angulation based position algorithm can be 
applied. Time Of Arrival (TOA) records the time it takes for a 
signal to be sent from a sensor to a mobile phone or vice versa. 
Having multiple sensors, a trilateration algorithm can be 
applied to extract positions. In this case, larger distances cause 
a higher precision. Radio Signal Strength (RSS) uses the 
dependency of radio signal strength on the distance. In theory 
they carry an inverse proportional relation. RSS is easy to use; 
in contrast to TOA and AOA no additional data processing is 
required. Similar to TOA the position may be estimated using 
trilateration algorithm. The Bluetooth scanners used in this 
work are not capable of measuring neither angles nor precise 
time differences, but record a radio signal strength value. Thus, 
we use a RSS localization technique. Furthermore, we utilize 
the location fingerprinting algorithm which is a pattern 
matching algorithm that estimates the position based on 
training data. It consists of two phases: an online and an offline 
one. During the online phase signal strengths are recorded for 
various training locations. In case of noisy environment, these 
perturbances are recorded directly with this data and do not 
require further filtering. In the online phase a data mining 
model (trained with the data from the offline phase) is used to 
match a position for a current radio signal strength value. The 
next sections study this algorithm for use with Bluetooth data 
and present our performance analyses. 

 

III. PEDESTRIAN POSITION REPRODUCTION 

In this section we describe the use of the fingerprinting 
method for Bluetooth pedestrian position reproduction in our 
test scenario and introduce the results of this attempt. In this 
context we collect training data, build up different types of 
prediction models and validate the performance.  

For easy validation, our experiments are performed within a 
lab of size 10 times 15 meters. The room includes some 
furniture and separating walls (see Fig. 1 for a floorplan image) 
that may affect the radio signal strength (RSS) in terms of 
increased noise factor. Four Bluetooth sensors are uniformly 
distributed among the room, and thus placed in each corner. 
Therefore, the footprints of the sensors overlap. The problem of 
long scan intervals of the Bluetooth protocol is addressed by 
usage of three antennas per sensor which scan simultaneously 
time shifted for Bluetooth enabled mobile phones. As radio 
signal strength depends directly on the distance, localization 

 

Figure 1.  Floorplan of the test field; dots mark the sensor positions, helices 

mark the locations for training data recordings 
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techniques based on RSS may be studied in our test scenario.  

 

For the pedestrian position reproduction, we utilize the 
fingerprinting method. This fingerprinting method can be 
divided into two stages, (1) an offline and (2) an online phase. 
During the offline phase, radio signal strengths become 
recorded as training data using well known devices at few well 
known, preselected, probing locations. As result we achieve a 
radio signal strength value at every probing location for all 
pairs of (sensor, mobile phone). The vector of all signal 
strength values for a mobile phone at one position (i.e. the set 
of values among all sensors) form the so called fingerprints for 
the probed locations. Based on these fingerprints a classifier is 
trained that predicts locations based on an arbitrary radio signal 
fingerprint. Any data mining method (e.g. k-Nearest Neighbour 
KNN or Support Vector Machines SVM) is applicable. 
Afterwards, in stage 2, the online phase, the previously trained 
model is applied to estimate current positions of devices based 
on their actual fingerprints. Since we are interested in 
localizing Bluetooth-enabled phones, we conduct our 
experiments with three HTC phones and one Nokia mobile 
phone. In step 1, we place it at ten different positions uniformly 
distributed in the room. The online phase, i.e. the application of 
the prediction model, will be used for pedestrian route choice 
reproduction, tackled in Section 4.  

The distance between two positions ranges from 3 to 
approximately 4 meters. Figure 1 depicts the floorplan 
including the four sensor positions represented by blue points 
and the 10 probing positions for test recordings as red dots. 
During data acquisition at each testing location (indicated by 
red dots) the fingerprints of all mobile phones are recorded. 
Additionally the room is tessellated into various grids of 
different grain size to measure the prediction accuracy at 
different granularities later on. To each grid cell one or more 
test locations are mapped.  

Analysis of the collected data indicates an irregular time 
interval between two succeeding records of one mobile phone 
to one sensor larger than one minute in marginal case but with 
an average of eight seconds approximately. The recorded 
signal strength data of each sensor is aggregated for every 
minute so that every sensor collects the same amount of data 
for each measurement position. Gaps in this aggregation 
(minutes without a data record for a particular mobile phone) 
are filled with the average of this mobile phones sensor data at 
this particular position.  

The data-mining methods used in the training phase are  
K-Nearest-Neighbour (KNN) and Support Vector Machine 
(SVM). KNN compares the radio signal strengths with similar 
signal strengths of already predicted data by computing the 
euclidean distance and makes a discrete classification for a grid 
cell, as well as a probability value for each grid cell based on 
its the weighted nearest neighbours. SVM performs a linear 
binomial classification by computing a line with the largest 
possible distance between two classes. As we have more than 
two classes multiclass SVM is used by comparing one versus 
all each time. Experiments have shown that KNN gives the 
better prediction results as seen in Table 1, thus from now on 
KNN is used for our prediction.  

 

During the validation process three different versions of the 
k-fold cross validation are considered. One version with the 
standard leave-one-out method (1), one version where instead 
of one record, the whole data of one mobile phone is left out 
(2) and one version where only the data of one mobile phone is 
observed, using the leave-one-out method again (3). 
Motivation for this is to take a look at the influences of 
different mobile phones, as experiences show that in intelligent 
environments many different phone-types are used and people 
carry their phones at different positions. For the 10-position 
grid the leave-one-out method has an accuracy of 67.95%, the 
leave-one-phone-out method has 50.23% and the leave-one-out 
with just one phone an accuracy of 73.64%. To consider the 
different phone types in a real environment we just look at the 
leave-one-phone-out method in the following predictions. 
Table 2 shows the prediction results for different grids. 

The "2-grid top bottom# divides the room in two cells $ top 
and bottom $ and for each probing position (red dots in 
Figure_1) it is predicted if it belongs to the upper or to the 
lower grid cell. Not all recorded positions are used as training 
data; it is differentiated between only the upper and lower 
corner-points, three points including the top/bottom middle 
point and four points including additionally the position close 
to the center. The "2-grid left right# divides the room in a left 
and a right grid cell, one time with just the corner-positions as 
input another time also with the particular center positions. The 
"3-cell grid# divides the room in an upper, middle and a lower 
cell, each time using only the respective left and right position 
as input. The "4-cell grid# consists of four corner cells with just 
the corner-position as input. The "6-cell grid# divides the room 
in 6 cells. This can be equalized with the 6 positions, each 3 
left and right, not using any middle positions.  

As we can see the 10-position prediction with accuracy of 
50.23% is not very good. Especially the four center-near 
positions deliver unsatisfactory results. By coursing the grid, 
the results become better. Considering just the top bottom and 
the left right grid we have a probability larger than 90% for 
positions near the sensors. Once the positions are farther away 
the results degrade but still have an overall accuracy of more 
than 80%. The nearer the positions are to the next grid-cell the 
more the prediction accuracy decreases. 

In the next step we take a look at the impact of the number 
of sensors on the accuracy and therefore we remove each 
sensor once and make the prediction. As a result, the prediction 
worsens in every experiment, most in the corner where the 

TABLE I COMPARISON OF KNN SVM FOR LOCATION REPRODUCTION 

Grid KNN SVM 

10-position grid 50.23% 38.41% 

6-cell grid 71.21% 64.02% 

4-cell grid 94.89% 90.34% 

TABLE 2 LOCATION REPRODUCTION ACCURACY 

Grid Leave-one-phone-out 

10-position grid 50.23% 

6-cell grid 71.21% 

4-cell grid 94.89% 

3-cell grid 78.41% 

2-grid top bottom, 2 points 97.73% 

2-grid top bottom, 3 points 91.67% 

2-grid top bottom, 4 points 83.81% 

2-grid left right, 2 points 93.75% 

2-grid left right, 3 points 81.44% 
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omitted sensor is missing. Afterwards we add a fifth sensor 
near the left-middle position. The prediction accuracy for the 
"6-cell grid# improves about 15% especially at the left middle 
cell where the new sensor is placed. The "10-position grid# 
improves about 13% and the "3-cell grid# about 11%. On the 
other hand the "2-grid top bottom# decreases by 2% and the 
"4-cell grid# by 1%. This shows that using more sensors does 
not per se guarantee better results for each type of prediction. 
Moreover, results depend on the placement strategy of the 
sensors in balance with the places we want a fine granularity of 
localization estimation. 

In conclusion, the tests have shown that a localization 
estimation for distances of less than 4 meters do not give 
results that are good enough for use in real environments with 
different mobile phone types. However, these results are quite 
good when using only a single phone, especially when a fifth 
sensor is placed at a strategic position. Considering larger 
distances by dividing the room in just two halves top/bottom or 
left/right or in sensor near quarters we get robust results that 
are suited for real world applications and creation of pedestrian 
location aware intelligent environments. 

 

IV.  PEDESTRIAN ROUTE CHOICE REPRODUCTION 

Creation of location aware environments does not only 
need to identify current pedestrian positions but identification 
of their routes taken through a particular site. In this section we 
introduce the pedestrian route choice reproduction which we 
base on the position prediction models from the previous 
section. This includes the definition of routes, the collection of 
training data, two different attempts of data preparation and the 
creation and validation of route prediction models. We close 
this section with the evaluation of our approach. 

For the pedestrian route choice reproduction a graph is 
mapped to the floorplan, containing different possible 
predefined routes. These routes can be clustered in different 
complicacy levels, defined 'left route', 'right route', 'top route', 
'bottom route' as well as more difficult routes leading through 
the center of the room. Figure 2 visualizes the graph in our 
floorplan, and the routes can be seen as black arrows in 
Figure_3. For the validation a person walks the routes in 
different speed $ extremely slow or normal $ using the Nokia 
mobile phone. Only the models with data of the Nokia phone 
as input as well as five sensors placed in the room are used as 
they have shown in the previous Section 3 to deliver best 

usable location estimations for the 10-position test grid. 

Two different types of data preparation are performed. The 
first one merges the sensor data whenever data from at least 
three or more sensors is available within a 10-second interval. 
These aggregation intervals may overlap, thus it is possible that 
one record may belong to several entries. Each entry obtains 
the average time of the involved sensors. The second data 
preparation method interpolates between previous and next 
signal strength record, e.g. two entries with signal strength 70 
and 60 and 9 seconds time between them generate 9 new 
database records labeled with signal strength from 61 to 69. 
However, afterwards we have a signal strength value for each 
sensor at every second.  

Next the positioning models from the previous section are 
used to predict a position to each data record. Besides the 
discrete positions each result gets as well a fuzzy prediction 
based on KNN percentage results. The 10 position probabilities 
and the grid-cells are mapped to the graph and by that a chosen 
route can be predicted by the occurrence of each position. By 
comparing the prediction results of the two different prepared 
data sets it reveals that the version with interpolated seconds 
delivers slightly better performance. Therefore only this 
version is presented in the following examination. 

In a first analysis the route prediction is studied taking the 
whole graph into account. Therefore, the 10-position model is 
used and each position is mapped to a graph node by its fuzzy 
prediction. The results for the slow routes are presented in 
Figure 3. As we can see route 4 (right) and route 5 (top) are 
predicted very well. However other routes behave worse 
although a trend to the correct route can be seen in most of the 
cases. Route 3 (center) is predicted well due to the effect that 
the predictions are equally distributed left and right, but on the 
other hand the center positions are usually not well predicted. 
Furthermore, the worse prediction of the center bottom node as 
seen at route 6 and 7 is particularly noticeable. Reasons could 
be the phone position or the change of furniture between the 
test experiments and the route prediction experiments. 

In a second analysis the route prediction is observed taking 
only the routes 'left', 'right', 'top' and 'bottom' into account. By 
doing this we want to see how the results improve when we use 
larger distances between the routes. For this the prediction 

 
Figure 2. Floorplan of the test field with mapped graph for route choice 

reproduction in green

 
Figure 3. Results of route choice reproduction for eight test cases 
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models '2-grid top bottom' and '2-grid left right' are used. 
Table_3 illustrates our results. 

These predictions give 100% correctness for all slow routes 
and just one error for the normal routes where the left route is 
predicted completely wrong. This is caused by few data entries 
at this point. In all other cases the 2-grid left right has correct 
predictions with a percentage from 74,94% to 91,62% (table 
values multiplied by 2) when we just take this grid-model into 
account. The 2-grid top bottom grid delivers even better results 
between 96% and 100%. As we make use of both models for 
the route prediction and not only top or bottom respectively left 
or right the mentioned percentages of 74.94% or 96% are the 
same results as seen on 2-grid left right for the slow left way 
and 2-grid top bottom for the normal bottom route multiplied 
by two. 

Concluding the route prediction with an average route 
distance of about 3 meters, taking the 10-positon grid into 
account has not proven to deliver good predictions. However, 
classification with larger grid cells and a distance of 
approximately 6 meters produces good predictions. 
Disadvantage of this approach is that it does not provide an 
opportunity to predict time-related trajectories. Furthermore 
routes with the use of multiple mobile phones should be 
considered as well in future studies. 

 

V. CONCLUSION AND FUTURE WORK 

This paper focused on pedestrian position and route choice 
reproduction. This task is of high interest for creation of 
location aware intelligent environment. Since existing 
technologies (video surveillance, surveys, light beams) have 
drawbacks and are not easy to apply, we studied the usage of 
Bluetooth tracking. We presented state-of-the art research for 
Bluetooth tracking and preceded the research on utilizing the 
fingerprinting method for Bluetooth tracking. Furthermore, we 
studied and validated performance and accuracy of the 
presented approach. Therefore, we used grids with varying 
granularity to evaluate the accuracy of our estimation 
depending on required precision. Afterwards, the pedestrian 
route choice prediction bases on the positioning model. The set 
of routes are predefined by a graph and the previously 
introduced grid-cells are mapped to its edges for prediction.  

We have shown that it is possible to deliver good results for 
a smaller distance (3 to 4 meters) with the use of just one 
mobile phone and an expedient sensor positioning in relation to 
the positions we want to predict. However, models built not 
just for a lab but for real world usage need to perform well for 
different types of mobile phones. In our case, it was unusable 

for the fine granular grid. By taking a look at larger distances 
like predicting left and right or top and bottom of the room, 
which relates to 6 or more meters, we could get much better 
results. The results get better the nearer a position is to a 
sensor. Furthermore we have seen that the placement and 
amount of sensors can affect the result strongly. Therefore it is 
important to place sensors strategic depending on the goals. 
Taking the routes into consideration it is advisable to define 
grids as well as probing positions (where training data is 
recorded). Route predictions with a precision of 6 meters or 
more and the use of larger grid-cells have proven to deliver 
good results with a single mobile phone.  

Future work should consider well defined relations between 
routes, grid-cells, sensor positions as well as collection of 
training data and its amount. In a further step the prediction of 
connected routes including time-related trajectories with the 
possibility to predict changes in direction and duration of stay 
should be integrated. This should also include the usage of 
multiple mobile phones. Another open task is the study of 
representativeness of Bluetooth tracking in detail. 
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